Design of Smart Power Grid Renewable Energy Systems (eBook, PDF) - Keyhani, Ali
-13%
115,99 €
Bisher 132,99 €**
115,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Bisher 132,99 €**
115,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Bisher 132,99 €**
-13%
115,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Bisher 132,99 €**
-13%
115,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: PDF


Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart…mehr

Produktbeschreibung
Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart residential PV microgrids. These include energy monitoring systems, smart devices, building load estimation, load classification, and real-time pricing. The book presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers, which are all integrated into the design of microgrids for renewable energy as part of bulk interconnected power grids. Other topics of discussion include the Newton formulation of power flow, the Newton--Raphson solution of a power flow problem, the fast decoupled solution for power flow studies, and short circuit calculations. * Focuses on the utilization of DC/AC inverters as a three-terminal element of power systems for the integration of renewable energy sources * Presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers * Contains problems at the end of each chapter * Supplementary material includes a solutions manual and PowerPoint presentations for instructors Design of Smart Power Grid Renewable Energy Systems, Second Edition is a textbook for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals. ALI KEYHANI, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in energy conversion, power electronics, and power systems engineering.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 592
  • Erscheinungstermin: 27.04.2016
  • Englisch
  • ISBN-13: 9781118978931
  • Artikelnr.: 44991131
Autorenporträt
Ali Keyhani, PhD, is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for companies such as Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in Energy Conversion, Power Electronics, and Power Systems Engineering.
Inhaltsangabe
Preface xiii Acknowledgments xvi About the Companion Website xvii 1 Energy and Civilization 1 1.1 Introduction: Motivation 1 1.2 Fossil Fuel 2 1.3 Energy Use and Industrialization 2 1.4 Nuclear Energy 4 1.5 Global Warming 5 1.6 The Age of the Electric Power Grid 9 1.7 Green and Renewable Energy Sources 10 1.8 Hydrogen 11 1.9 Solar and Photovoltaic 11 1.9.1 Wind Power 12 1.9.2 Geothermal 13 1.10 Biomass 13 1.11 Ethanol 13 1.12 Energy Units and Conversions 13 1.13 Estimating the Cost of Energy 17 1.14 New Oil Boom-Hydraulic Fracturing (Fracking) 20 1.15 Estimation of Future CO2 21 1.16 The Paris Agreement UNFCCC 22 1.17 Energy Utilization and Economic Growth 23 1.18 Conclusion 23 Problems 24 Further Reading 26 2 Power Grids 28 2.1 Introduction 28 2.2 Electric Power Grids 29 2.2.1 Background 29 2.2.2 The Construction of a Power Grid System 29 2.3 Basic Concepts of Power Grids 33 2.3.1 Common Terms 33 2.3.2 Calculating Power Consumption 33 2.4 Load Models 49 2.5 Transformers in Electric Power Grids 53 2.5.1 A Short History of Transformers 54 2.5.2 Transmission Voltage 54 2.5.3 Transformers 55 2.6 Modeling a Microgrid System 59 2.6.1 The Per Unit System 60 2.7 Modeling Three-Phase Transformers 69 2.8 Tap-Changing Transformers 72 2.9 Modeling Transmission Lines 74 Problems 87 References 92 3 Modeling of Converters in Power Grid Distributed Generation Systems 93 3.1 Introduction 93 3.2 Single-Phase DC/AC Inverters with Two Switches 94 3.3 Single-Phase DC/AC Inverters with a Four-Switch Bipolar Switching Method 106 3.3.1 Pulse Width Modulation with Unipolar Voltage Switching for a Single-Phase Full-Bridge Inverter 110 3.4 Three-Phase DC/AC Inverters 113 3.5 Pulse Width Modulation Methods 114 3.5.1 The Triangular Method 114 3.5.2 The Identity Method 119 3.6 Analysis of DC/AC Three-Phase Inverters 120 3.7 Microgrid of Renewable Energy Systems 130 3.8 DC/DC Converters in Green Energy Systems 133 3.8.1 The Step-Up Converter 134 3.8.2 The Step-Down Converter 144 3.8.3 The Buck-Boost Converter 151 3.9 Rectifiers 156 3.10 Pulse Width Modulation Rectifiers 160 3.11 A Three-Phase Voltage Source Rectifier Utilizing Sinusoidal PWM Switching 163 3.12 The Sizing of an Inverter for Microgrid Operation 167 3.13 The Sizing of a Rectifier for Microgrid Operation 169 3.14 The Sizing of DC/DC Converters for Microgrid Operation 170 Problems 171 References 176 4 Smart Power Grid Systems 177 4.1 Introduction 177 4.2 Power Grid Operation 178 4.3 Vertically and Market-Structured Power Grid 184 4.4 The Operations Control of a Power Grid 187 4.5 Load Frequency Control 187 4.6 Automatic Generation Control 193 4.7 Operating Reserve Calculation 198 4.8 Basic Concepts of a Smart Power Grid 199 4.9 The Load Factor 206 4.10 The Load Factor and Real-Time Pricing 209 4.11 A Cyber-Controlled Smart Grid 212 4.12 Smart Grid Development 214 4.13 Smart Microgrid Renewable and Green Energy Systems 216 4.14 A Power Grid Steam Generator 223 4.15 Power Grid Modeling 234 Problems 240 References 245 5 Solar Energy Systems 247 5.1 Introduction 247 5.2 The Solar Energy Conversion Process: Thermal Power Plants 251 5.3 Photovoltaic Power Conversion 253 5.4 Photovoltaic Materials 253 5.5 Photovoltaic Characteristics 255 5.6 Photovoltaic Efficiency 258 5.7 The Design of Photovoltaic Systems 262 5.8 The Modeling of a Photovoltaic Module 277 5.9 The Measurement of Photovoltaic Performance 278 5.10 The Maximum Power Point of a Photovoltaic Array 278 5.11 A Battery Storage System 292 5.12 A Storage System Based on a Single-Cell Battery 294 5.13 The Energy Yield of a Photovoltaic Module and the Angle of Incidence 317 5.14 The State of Photovoltaic Generation Technology 318 Problems 318