84,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
42 °P sammeln
  • Gebundenes Buch

RNA Modification, Volume 41 examines the powerful ability to regulate the function of RNA molecules or modify the message transmitted by RNA molecules. Chapters in this newly released volume include The Importance of Being Modified: Modifications Shape RNA Function through Chemistry, Structure and Dynamics, The evolution of multi-substrate specificity by RNA modification enzymes, TrmD: a methyl transferase for tRNA methylation with m1G37, Structures and activities of the Elongator complex and its co-factors, RNA pseudouridylation: Mechanism and Function, The activity of 5'3' exonucleases on…mehr

Produktbeschreibung
RNA Modification, Volume 41 examines the powerful ability to regulate the function of RNA molecules or modify the message transmitted by RNA molecules. Chapters in this newly released volume include The Importance of Being Modified: Modifications Shape RNA Function through Chemistry, Structure and Dynamics, The evolution of multi-substrate specificity by RNA modification enzymes, TrmD: a methyl transferase for tRNA methylation with m1G37, Structures and activities of the Elongator complex and its co-factors, RNA pseudouridylation: Mechanism and Function, The activity of 5'3' exonucleases on hypo modified tRNA substrates and other structured RNAs, and the Synthesis, heterogeneity and function of post-transcriptional nucleotide modifications in eukaryotic ribosomal RNAs.

This field has recently seen a very rapid progress in the understanding of the mechanism and enzymes involved in RNA modification. This volume presents some of the most recent advances in the identification and function of enzymes involved in modifying RNA molecules.
Autorenporträt
Fuyu Tamanoi is a biochemist who has served on the UCLA School of Medicine and UCLA College faculty since he joined the Department of Microbiology, Immunology & Molecular Genetics in 1993. He became a full professor in 1997.

Dr Guillaume Chanfreau obtained his Bachelor Degree from Université Claude Bernard Lyon and ENS Lyon and his PhD in Microbiology from Université Paris VI. During his PhD, mentored by Alain Jacquier, he characterized the mechanism of splicing of group II intron ribozymes. Dr Chanfreau then completed postdoctoral training at UCSF with Christine Guthrie, where he identified novel factors involved in 3'-end processing of mRNAs and small RNAs. After this postdoctoral training, he was recruited at UCLA as a professor in the Department of Chemistry and Biochemistry where he teaches a Biochemistry upper division course focused on DNA, RNA and protein synthesis. At UCLA, Dr Chanfreau has developed a research program focused on understanding the mechanisms of RNA degradation and RNA processing, and how these processes contribute to regulate gene expression.