41,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

Clathrin-mediated endocytosis (CME) is a ubiquitous internalization process in eukaryotic cells. It consists of the formation of an approximately 50-nm diameter vesicle out of a flat membrane. Genetics, biochemistry, and microscopy experiments performed in the last four decades have been instrumental to discover and characterize major endocytic proteins in yeast and mammals. However, due to the highly dynamic nature of the endocytic assembly and its small size, many questions remain unresolved: how are endocytic proteins organized spatially and dynamically? How are forces produced and how are…mehr

Produktbeschreibung
Clathrin-mediated endocytosis (CME) is a ubiquitous internalization process in eukaryotic cells. It consists of the formation of an approximately 50-nm diameter vesicle out of a flat membrane. Genetics, biochemistry, and microscopy experiments performed in the last four decades have been instrumental to discover and characterize major endocytic proteins in yeast and mammals. However, due to the highly dynamic nature of the endocytic assembly and its small size, many questions remain unresolved: how are endocytic proteins organized spatially and dynamically? How are forces produced and how are their directions controlled? How do the biochemical activities of endocytic proteins and the membrane shape and mechanics regulate each other? These questions are virtually impossible to visualize or measure directly with conventional approaches but thanks to new quantitative biology methods, it is now possible to infer the mechanisms of endocytosis in exquisite detail. This book introduces quantitative microscopy and mathematical modeling approaches that have been used to count the copy number of endocytic proteins, infer their localization with nanometer precision, and infer molecular and physical mechanisms that are involved in the robust formation of endocytic vesicles.
Autorenporträt
Julien Berro, Ph.D., is an assistant professor of Molecular Biophysics and Biochemistry, and of Cell Biology at Yale University. He initially trained in Physics, Applied Mathematics and Computer Sciences at the Institut National Polytechnique of Grenoble, France. He obtained his Ph.D. in Mathematical Modeling in Biology at Université Joseph Fourier, Grenoble, France, where he worked with Jean-Louis Martiel and Laurent Blanchoin on mathematical models for actin filament biochemistry and mechanics. After a brief tenure as an assistant professor in the department of Mathematics at Université Claude Bernard, Lyon, France, he decided to further his training by learning cell biology and quantitative microscopy in the laboratory of Tom Pollard at Yale University. Since he started his own laboratory in 2013, he has combined experimental, computational, and theoretical approaches to uncover the mechanisms of molecular machineries that produce forces in the cell, with a particular focus on the actin cytoskeleton and endocytosis.