105,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
53 °P sammeln
  • Gebundenes Buch

Pseudokinases, Volume 667, the latest release in the Methods in Enzymology serial, highlights new advances in the field with this new volume presenting interesting chapters, including the Production and Purification of the PEAK pseudokinases for structural and functional studies, Structural biology and biophysical characterization of Tribbles pseudokinases, Detecting endogenous TRIB protein expression and its downstream signaling, Analysis of human Tribbles 2 pseudokinase, Expression, purification and examination of ligand-binding to IRAK pseudokinases, Characterization of pseudokinase…mehr

Produktbeschreibung
Pseudokinases, Volume 667, the latest release in the Methods in Enzymology serial, highlights new advances in the field with this new volume presenting interesting chapters, including the Production and Purification of the PEAK pseudokinases for structural and functional studies, Structural biology and biophysical characterization of Tribbles pseudokinases, Detecting endogenous TRIB protein expression and its downstream signaling, Analysis of human Tribbles 2 pseudokinase, Expression, purification and examination of ligand-binding to IRAK pseudokinases, Characterization of pseudokinase ILK-mediated actin assembly, Biochemical examination of Titin pseudokinase, Approaches to study pseudokinase conformations, CRISPR editing cell lines for reconstitution studies of pseudokinase function, and much more.
Autorenporträt
James Murphy is Associate Professor and the head of the Inflammation Division at the WEHI (formerly known as The Walter and Eliza Hall Institute of Medical Research) in Melbourne and is closely associated with The University of Melbourne and The Royal Melbourne Hospital. James' lab studies the protein-protein interactions that underpin signal transduction. Much of his work is focused on understanding the molecular mechanisms by which protein kinases and their relatives, pseudokinases, regulate cell signaling. Their work on the pseudokinase, MLKL, provided a template for developing a detailed understanding of how the remaining ~50 uncharacterized pseudokinases modulate cell signaling.