264,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
132 °P sammeln
  • Gebundenes Buch

This book reviews past, present, and emerging optical laser-based technologies for the detection of explosives. Each chapter is authored by a leading expert on the respective technology, and is structured to offer historical perspective, address current advantages and challenges, and discuss novel research and applications. With the ultimate goal of aiding military and security forces in increasing speed and accuracy of explosive detection and identification, the text covers terahertz, laser-induced breakdown, ultrafast, cavity ringdown, Raman, and reflectance spectroscopy, photodissociation laser-induced fluorescence, hyperspectral imaging, and more.…mehr

Produktbeschreibung
This book reviews past, present, and emerging optical laser-based technologies for the detection of explosives. Each chapter is authored by a leading expert on the respective technology, and is structured to offer historical perspective, address current advantages and challenges, and discuss novel research and applications. With the ultimate goal of aiding military and security forces in increasing speed and accuracy of explosive detection and identification, the text covers terahertz, laser-induced breakdown, ultrafast, cavity ringdown, Raman, and reflectance spectroscopy, photodissociation laser-induced fluorescence, hyperspectral imaging, and more.
Autorenporträt
Paul M. Pellegrino is chief of the Optics and Photonics Integration Branch in the Sensors and Electron Devices Directorate at the United States Army Research Laboratory (ARL), Adelphi, Maryland. He has been with the ARL as a physicist for 17 years. In addition to his branch chief duties, he actively participates in numerous spectroscopic efforts for hazardous material sensing. He has more than 20 years of experience in optics, physics, and computational physics, with an emphasis on the application of novel spectroscopy and optical transduction for chemical and biological sensing. Widely published, Dr. Pellegrino is a member of the OSA, SPIE, and SAS. Ellen L. Holthoff is a research chemist in the Sensors and Electron Devices Directorate at the United States Army Research Laboratory (ARL), Adelphi, Maryland, where her experimental work includes the development of MEMS-scale photo-acoustic sensor platforms for gas detection, molecularly imprinted polymers for chemical and biological sensing applications, and drop-on-demand ink-jet printing for sample standardization. Her other research interests include sol-gel chemistry and fluorescence spectroscopy. Dr. Holthoff held an Oak Ridge Associated Universities Postdoctoral Fellowship at the ARL. She has authored and coauthored more than 30 research papers and conference proceedings as well as three book chapters and numerous internal army reports. Mikella E. Farrell is a research chemist in the Sensors and Electron Devices Directorate at the United States Army Research Laboratory, Adelphi, Maryland, where her work has included developing SERS substrates for army-specific biological and hazard sensing, biomimetic hazard sensing employing designed peptides, the fabrication of a nanoscale SERS imaging probe, and transitioning a standardized technique for the fabrication of drop-on-demand hazard test evaluation coupons. She also has been involved with supporting Defense Advanced Research Projects Agency SERS Fundamentals programs, university SERS-based research programs, and the evaluation of fielded standoff hazard detection systems. She is widely published and holds a United States patent.