191,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
96 °P sammeln
  • Gebundenes Buch

This book provides an accessible presentation of the quantum mechanical concept of spin and the rapidly expanding technology associated with its use in information processing devices and circuits. Featuring many new drill problems, this edition reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications. It discusses spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means. It explores lateral spin-orbit interaction and its many nuances, as well as the possibility to…mehr

Produktbeschreibung
This book provides an accessible presentation of the quantum mechanical concept of spin and the rapidly expanding technology associated with its use in information processing devices and circuits. Featuring many new drill problems, this edition reflects the explosion of study in spin-related physics, addressing seven important physical phenomena with spintronic device applications. It discusses spintronics without magnetism, which allows one to manipulate spin currents by purely electrical means. It explores lateral spin-orbit interaction and its many nuances, as well as the possibility to implement spin polarizers and analyzers using quantum point contacts. It also introduces the concept of single-domain-nanomagnet-based computing.
Autorenporträt
Supriyo Bandyopadhyay is Commonwealth Professor in the Department of Electrical and Computer Engineering at Virginia Commonwealth University, where he directs the Quantum Device Laboratory. A Fellow of several scientific societies, Dr. Bandyopadhyay serves on the editorial boards of six international journals, and as the chair of the Technical Committee on Spintronics within the Nanotechnology Council of the Institute of Electrical and Electronics Engineers (IEEE). He previously served as the chair of the Technical Committee on Compound Semiconductor Devices within the Electron Device Society of IEEE, as an IEEE distinguished lecturer, and as a vice president of the IEEE Nanotechnology Council. Widely published, he has given more than 100 invited/keynote talks at conferences, workshops, and colloquia across four continents, and received the Distinguished Scholarship Award (the highest award for scholarship awarded to one faculty member each year) from Virginia Commonwealth University. Marc Cahay is a professor in the Department of Electrical Engineering and Computing Systems at the University of Cincinnati. Widely published and highly decorated, Professor Cahay is a Fellow of the Academy of Teaching and Learning at the University of Cincinnati, a Fellow of several scientific societies, a member of numerous editorial boards, the education chair of the Institute of Electrical and Electronics Engineers (IEEE) Nanotechnology Council, and a member of the IEEE Technical Committee on Spintronics, Nanomagnetism and Quantum Computing. He has served on the organizing committee of more than 30 international conferences, as an IEEE Nanotechnology Council and IEEE Electron Device Society distinguished lecturer, as a member of IEEE Technical Committee on Simulation and Modeling, and as the IEEE Nanotechnology Council vice-president of conference.