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The cover artwork shows two figures. On the left is a scanning electron micrograph of two closely spaced 
nanomagnets—one more shape-anisotropic than the other – which together act as a nanomagnetic inverter 
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On the right is a schematic of an all-electric spin polarizer based on a dual quantum point contact formed in a 
two-dimensional electron gas. A set of four in-plane side gates is used to control the amount of spin polar-
ization in the narrow portion of the device. The blue and red regions represent accumulations of spin-down 
and spin-up electrons. The spin polarization configuration can be altered by changing the bias configura-
tions on the four side gates.  The onset of spin polarization is accompanied by the presence of anomalies in 
the conductance of the dual quantum point contact. This figure is the result of simulations and theoretical 
calculations carried out at University of Cincinnati.
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Preface

This is a textbook intended to introduce a student of engineering, materi-
als science and/or applied physics to the field of spintronics. While the term
“spintronics” may have different connotations for different people, in this text-
book it deals primarily with the science and technology of using the spin degree
of freedom of a charge carrier to store, encode, access, process and/or transmit
information in some way. That role had been traditionally delegated to the
“charge” of an electron, not its “spin.” Over the last two decades or so, there
has been burgeoning interest in augmenting the role of charge with spin, or
even replacing charge with spin in information processing devices.

Interest in spintronics was motivated by a longstanding tacit belief that
replacing charge with spin may yield some advantages in terms of increased
processing speed, lower power consumption, and/or increased device density
on a chip. While this may not always be true, there are some scenarios where
it may become true in the near future. In this textbook, we place particular
emphasis on identifying situations where “spin” may have an advantage over
“charge” and where it may not (see, in particular, Chapters 13–15).

The advent of quantum computing has added a new dimension to all this.
The spin polarization of a single electron can exist in a coherent superpo-
sition of two orthogonal spin polarizations (i.e., mutually anti-parallel spin
orientations) for a relatively long time without losing phase coherence. The
charge degree of freedom, on the other hand, loses phase coherence much
faster. Therefore, spin has become the preferred vehicle to host a quantum
bit (or “qubit”), which is a coherent superposition of two orthogonal states
of a quantum mechanical entity representing classical logic bits 0 and 1. The
potential application of spin to scalable quantum logic processors has a short
history, but has provided a tremendous boost to spintronics.

This textbook is expected to equip the reader with sufficient knowledge and
understanding to conduct research in the field of spintronic devices, particu-
larly semiconductor-based spintronic devices. We assume that readers have
first-year graduate-level knowledge of device engineering, solid state physics,
and quantum mechanics.

The first edition of this book was organized into fifteen chapters and the
second edition contains eighteen chapters. The first chapter provides a his-
torical perspective to those who have had little or no exposure to this field. It
traces the early history of spin, the anomalous Zeeman effect, and ends with
an account of the accidental discovery of “spin” by Stern and Gerlach in 1922.

Chapter 2 introduces the quantum mechanics machinery needed to under-

xv
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stand spin physics, as well as analyze spin transport and general spin dynamics
in solid state structures. It also introduces the concept of Pauli spin matrices,
the Pauli equation, and finally its relativistic refinement—the Dirac equation.
Since, in this textbook, we will never encounter any situation where relativistic
corrections become important, we will not have any occasion to use the Dirac
equation. The Pauli equation will be sufficient for all scenarios. Nonetheless,
it is important to gain an appreciation for the Dirac equation, since the quan-
tum mechanical nuances associated with spin cannot be absorbed without an
understanding of Dirac’s seminal work.

Chapter 3 introduces the Bloch sphere concept, since it is a very useful tool
to visualize the dynamics of a spin-1/2 particle (e.g., an electron), or qubit
encoded in the spin of an electron, under the action of external magnetic fields.
Applications of the Bloch sphere concept are elucidated with a number of
examples. A spinor, representing an electron’s spin, is viewed as a radial vector
in the Bloch sphere, and this serves as a nice visualization tool for students
interested in quantum computing and other applications of spintronics. All
coherent motions of the spinor (where spin does not relax) are essentially
excursions on the surface of the Bloch sphere.

Chapter 4 deals with an important application of the Bloch sphere concept,
namely, the derivation of Rabi oscillation and the Rabi formula for coher-
ent spin rotation or spin flip. These have important applications in many
spin-related technologies such as electron spin resonance spectroscopy, nuclear
magnetic resonance, and ultimately solid state versions of quantum comput-
ing. This chapter is somewhat mathematical and “seasons” the student to
deal with the algebra (and recipes) necessary for calculating quantities that
are important in spintronics. This chapter can be skipped at first and revisited
later.

Chapter 5 introduces the concept of the “density matrix,” pure and mixed
states, Bloch equations (that describe the temporal relaxation of spin), the
Bloch ball concept, and the notion of the longitudinal (T1) and transverse (T2)
relaxation times. Several numerical examples are also presented to strengthen
key concepts. Since here we allow the dynamics of spin to be incoherent, the
motion of the spinor is no longer constrained to the Bloch sphere. The “Bloch
sphere” actually refers only to the surface of the sphere and excludes the
interior. If spin relaxes so that the norm of the sphere’s radius is no longer
conserved, then we have to allow excursions into the interior of the Bloch
sphere. Therefore, we extend the Bloch sphere concept to the “Bloch ball”
concept. This chapter contains advanced concepts and may also be skipped
at first reading.

Chapter 6 introduces the rather important topic of spin–orbit interaction
which is at the heart of many spintronic devices, since it offers a “handle”
to manipulate spins. We introduce the general notion of spin–orbit interac-
tion and then focus on the two special types of spin–orbit interactions that
are predominant in the conduction band of most direct-gap semiconductors:
the Rashba interaction arising from structural inversion asymmetry, and the
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Dresselhaus interaction arising from bulk (crystallographic) inversion asym-
metry. These two interactions form the basis of spintronic field effect tran-
sistors where the current flowing between two of the transistor’s terminals is
modulated by influencing the spin–orbit interaction in the device via a po-
tential applied to the third terminal. Therefore, it is particularly important
for applied physicists, materials scientists, and engineers to understand these
interactions.

In Chapter 7, we derive the electron dispersion relations (energy versus
wavevector) of electrons in quasi two- and one-dimensional structures (quan-
tum wells and wires) in the presence of Rashba and Dresselhaus spin–orbit
interactions, as well as an external magnetic field. We also derive the spin
eigenstates, which allows us to deduce the spin polarization of carriers in any
band. All this is accomplished by solving the Pauli equation. This is an ex-
ample of how the Pauli equation is applied to solve a real life problem. We
place special emphasis on how the dispersion relations are modified by an ex-
ternal magnetic field. This is important since it ultimately helps the student
to appreciate how an external magnetic field can affect the performance of
spin-based devices.

Chapter 8 discusses spin relaxation of conduction electrons in metals and
semiconductors. We focus on four primary spin relaxation mechanisms: the
D’yakonov–Perel, the Elliott–Yafet, the Bir–Aronov–Pikus and hyperfine in-
teractions with nuclear spins, since these are dominant in the conduction band
of semiconductors and therefore are most important in device contexts. Be-
cause spin relaxation limits the performance of most, if not all, spin-based
devices, it is a vital issue. Ultimately, the aim of all device engineers and
physicists is to reduce the rate of spin relaxation in spin devices, in order
to make them more robust and useful. Spin relaxation also has peculiarities
that are completely unexpected and without parallel in solid state physics.
We present one example where spin can relax in time but not in space.

Chapter 9 is a new addition to the second edition and was not included in
the first. Since the publication of the first edition in 2008, there has been an
explosion in the study of spin-related physical phenomena, particularly those
that may have applications in spintronic devices. In this chapter, we also
discuss seven important physical phenomena that all have device applications:
the extrinsic and intrinsic spin Hall effect along with the inverse spin Hall effect
and the giant spin Hall effect, the spin Hanle effect, the spin capacitor effect,
the spin-torque effect, the spin Galvanic effect, the spin Seebeck effect, and
the inverse spin Seebeck effect or spin Peltier effect.

Chapter 10 introduces the more advanced concepts of exchange and spin–
spin interaction. These form the basis of ferromagnetism and also the basis
of single-spin computing schemes that are dealt with in Chapters 15 and 16.

Chapter 11 is an introduction to spin transport in solid state structures
in the presence of spin relaxation. We focus on two basic models: the
drift–diffusion model of spin transport and the semi-classical model that goes
beyond the drift–diffusion model. The “spin” drift–diffusion model is very
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similar to the “charge” drift–diffusion model applied to bipolar transport; the
“up-spin” and “down-spin” carriers assume roles analogous to electrons and
holes. However, it has limitations. One limitation that we emphasize with
specific examples is that it fails to describe essential features of spin transport,
even qualitatively, if electrons are traveling “upstream” against the force ex-
erted on them by an electric field. In this chapter, we present many examples
of how spin relaxes in time and space in quasi one-dimensional structures in
the presence of the D’yakonov–Perel’ spin relaxation mechanism, since it is
usually the dominant mechanism for spin relaxation in semiconductor struc-
tures. These examples are based on the semi-classical model and therefore
applicable to both low field transport and high field (hot electron) transport.
The semiclassical model is based on combining the Liouville equation for the
time evolution of the spin density matrix with the Boltzmann transport equa-
tion for time evolution of the carrier momentum in the presence of scattering
and external electric fields.

In Chapter 12, we discuss passive spintronic devices such as spin valves and
devices based on the giant magnetoresistance effect. Most commercial spin-
tronic products that are currently available (magnetic read heads for reading
data in computer hard disks or entertainment systems such Apple iPods, and
magnetic random access memory) utilize these passive devices. Therefore, an
adequate understanding of these devices is vital for engineers. We also discuss
the important notions of spin injection efficiency, spin extraction, and the re-
cently discussed spin blockade. This is a long chapter with many topics and
it is intended to introduce the reader to important concepts encountered in
the modern spintronics literature. We also discuss three very specific devices
that are spintronic “sensors”; one is a magnetic field sensor, another is a light
sensor (photodetector), and the third is a mechanical strain sensor. These
are discussed to show the reader that spintronics has myriad applications in
magnetics, mechanics and optics.

Chapter 13 introduces active spintronic devices, such as spin field effect
transistors and spin bipolar transistors. We explain the physical basis of how
these devices operate and what their shortcomings are. We make a simple
estimate of their performance figures in order to project a realistic picture of
whether they are or are not competitive with traditional electronic devices
that are currently extant. Regardless of their actual device potential, these
devices are standard-bearers that aroused early interest in the field among
engineers and applied physicists. This chapter discusses only the early variants
of spin transistors because of their pedagogical importance. New twists to spin
transistors appear in the literature frequently and it was not possible to do
justice to them within the limited space available. The only way the reader
can keep pace with this field is to follow the literature closely.

Chapter 14 discusses the recently discovered field of “spintronics without
magnetism,” which allows one to manipulate spin currents by purely electrical
means. The reader is introduced to lateral spin–orbit interaction, and its many
nuances, and the possibility of implementing spin polarizers and analyzers



Preface xix

using quantum point contacts. This too is a new addition to the second
edition.

Chapter 15 introduces more exotic concepts dealing with single-spin proces-
sors. Here, a single electron spin acts as the primitive bistable “switch” with
two stable (mutually anti-parallel spin orientation) states that encode classi-
cal logic bits 0 and 1. Switching between the bits is accomplished by flipping
the electron’s spin without moving the electron in space and causing current
flow. This chapter addresses fundamental notions like the ultimate limits of
dissipation in performing Boolean logic operations and has relevance to the
celebrated Moore’s law scaling. Another distinguishing feature is that this
chapter addresses spin-based architectures and not discrete devices like tran-
sistors. For example, it describes combinational logic circuits implemented
with single-spin-switches that communicate with each other via exchange in-
teraction and not physical wires. This is an area that has remained neglected,
but is really no more challenging than spin-based quantum computing, since
phase coherence of spin is not required. Being classical, it does not have
the promise of quantum speedup of computation, or the ability to solve in-
tractable problems, but it may provide valuable insights into the limits of
classical computation.

Chapter 16 is an introduction to the field of spin-based reversible logic
gates (that can, in principle, compute without dissipating energy) and spin-
tronic embodiments of quantum computers. This is a rapidly advancing field,
extremely popular among many spintronic researchers, and discoveries are
made at a fast pace. This chapter is written mostly for engineers and ap-
plied physicists (not computer scientists or theoretical physicists), and should
provide them with the preliminary knowledge required to delve further into
this field. We have also focused on electrical manipulation of spin qubits
rather than optical manipulation since this book is almost entirely devoted
to electro-spintronics rather than opto-spintronics. Needless to say, because
of the rapid advances in this area, it is impossible to address this field com-
prehensively. The reader is provided with a few examples to whet her/his
appetite and is urged to follow the literature closely to keep abreast of the
most recent developments.

Chapter 17 introduces the concept of “single-domain-nanomagnet” based
computing and is a more practical rendition of the single-spin logic architec-
ture ideas of Chapter 15. This is a new addition to the second edition. In a
single domain ferromagnet, all the spins rotate in unison under an external
influence because of strong exchange interaction between spins, making the
entire ferromagnet behave like a giant classical spin. This chapter is focused
primarily on logic architectures and discusses two main variants: dipole cou-
pled nanomagnetic logic (also known as magnetic quantum cellular automata)
and magneto-tunneling junction logic. Particular emphasis is placed on var-
ious magnet switching methodologies (magnetic field, spin-torque, spin-Hall
effect, toplogical insulators, and magneto-elastic switching) since they deter-
mine the energy efficiency of nanomagnetic architectures. Much of the mate-



xx Introduction to Spintronics

rial presented in this chapter, dealing with magneto-elastic devices, was the
result of collaborative research with Prof. Jayasimha Atulasimha at Virginia
Commonwealth University.

Chapter 18 is a stand-alone chapter that can be treated as an appendix. At
first sight, it will appear unrelated to spintronics, which it is, but it has been
included for a reason. There are many instances in this book when a student
will have to recollect or refamiliarize herself/himself with some key results
of quantum mechanics. Rather than making a trip to the nearest library,
it would be more convenient to have a “quantum mechanics primer” handy
where these key results have been re-derived. This chapter is included for
completeness and comprehensiveness. The reader can refer to it if and when
necessary.

At the time of writing the second edition, this book is still the only known
“textbook” in spintronics written in English. By its very nature, it must be
incomplete and omit many topics that are both important and interesting. We
have focused mostly on electron spin, and, with the sole exception of discussing
hyperfine nuclear interactions, we have ignored nuclear spin altogether. Hence,
we do not discuss such well-known phenomena as the Overhauser effect, which
is more relevant to nuclear spin. Another area that we have intentionally not
covered in any detail is organic spintronics. We omitted any discussion of
this field (it is still in its infancy) and do not discuss it primarily because
we feel that this is very much in evolution. Organic semiconductors (mostly
hydrocarbons) have weak spin–orbit interactions, so that spin relaxes slowly
in these materials compared to inorganic semiconductors. Hence, they have
a major advantage over inorganics when it comes to applications where spin
relaxation must be suppressed, such as in spin-based classical or quantum
computing. Some reviews have appeared in the literature covering organic
spintronics and an edited book is available from this publisher.

This textbook also heavily emphasizes transport phenomena as opposed
to optical phenomena dealing with the interaction of polarized photons with
spin-polarized electrons and holes. Hence, we do not discuss such devices as
spin-light-emitting diodes. Delving into “opto-spintronics” would have easily
added a couple hundred pages to the 600-odd pages in this textbook. Our
own expertise is more in transport phenomena, which has led us to focus
more on transport. However, there are many excellent books (although not
necessarily “textbooks”) available that deal with opto-spintronics, and the
interested reader can easily find an assortment of literature in that area.

Table of Universal Constants

Free electron mass (m0) 9.1 × 10−31 kilograms
Dielectric constant of free space (ǫ0) 8.854 × 10−12 Farads/meter
Electronic charge (e) 1.61 × 10−19 Coulombs
Reduced Planck constant (~) 1.05 × 10−34 Joules-sec
Bohr radius of ground state in H atom (a0) 0.529 Å= 5.29 × 10−11 meters
Bohr magneton (µB) 9.27 × 10−24 Joules/Tesla
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1

Early History of Spin

1.1 Spin

Most students of science and engineering know that every elementary particle,
such as electrons, neutrons, photons, neutrinos, etc., has a quantum mechan-
ical property called “spin” which can be measured (perhaps not easily, but
at least in principle) and has a quantized value, including zero. The vast
majority of these students mentally visualize spin as the angular momentum
associated with the elementary particle spinning or rotating about its own axis
(like a top or a planetary object). This mental picture, although convenient
and comforting, is actually somewhat crude and certainly incomplete. Landau
and Lifshitz, in their classic textbook on quantum mechanics [1], wrote “[the
spin] property of elementary particles is peculiar to quantum theory. [It] has
no classical interpretation... It would be wholly meaningless to imagine the
‘intrinsic’ angular momentum of an elementary particle as being the result of
its rotation about its own axis.”

The simplistic notion of self-rotation about an axis, shown in Fig. 1.1, can-
not explain many features of spin, such as why its magnitude cannot assume
continuous values and why it is quantized to certain specific values. It also
causes serious problems if taken too literally. As we will see later (Problem
1.2), if we think of an electron as a solid sphere of radius equal to the Lorentz
radius e2/(4πǫ0m0c

2) (where e is the electron’s charge, m0 is the mass, c is
the speed of light in vacuum, and ǫ0 is the dielectric constant of vacuum),
then the velocity on the surface of a rotating electron would have to be many
times the velocity of light in vacuum if such a rotation were to generate an
angular momentum equal to the electron’s spin. Obviously that would not be
permitted by the theory of relativity. Indeed, a deep understanding of quan-
tum mechanics is required to understand how the spin property comes about.
Its origin is in relativistic quantum mechanics and really was first appreciated
by Paul Andrew Maurice Dirac when he derived the Dirac equation which is
the cornerstone of relativistic quantum mechanics. Richard Feynman, noted
for his distaste for mysticism in physics, wrote about the notion of “spin”:
“It appears to be one of the few places in physics where there is a rule which
can be stated very simply, but for which no one has found a simple and easy
explanation. The explanation is down deep in relativistic quantum mechanics.

1
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FIGURE 1.1

A mental picture to visualize spin as the angular momentum associated with
self-rotation of a particle about an axis. This picture, although certainly
incomplete and heuristic, is adequate for many situations that the reader will
encounter in this book.

This probably means that we do not have a complete understanding of the
fundamental principle involved” [2]. We do not intend to mystify “spin” any
more than it already is, but rather we wish to underscore the fact that spin is
not a classical property easily explained in terms of everyday experience. It
is a property associated with relativistic quantum mechanics, for which there
is no everyday experience. This is the only place in this textbook where we
will mention this, since in the rest of this textbook we will have no occasion
to reflect on this truism. We will be primarily involved with practical and
applied aspects of spin, without relishing the fact that it is indeed an exotic
property far outside what we normally deal with in the applied sciences and
engineering.
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1.2 Bohr planetary model and space quantization

The history of how the concept of spin was established is somewhat tortuous.
In 1913, when Niels Bohr published his theory of the hydrogen atom, he had
thought of a planetary model where the electron orbits around the nucleus as
shown in Fig. 1.2. The radii of the allowed orbits are quantized. Each orbit
has a radius n2a0 where a0 is the Bohr radius of the ground state in the hy-
drogen atom (=4πǫ0~

2/m0e
2), which is 0.529 Å. Here ~ is the reduced Planck

constant, m0 is the electron’s mass, ǫ0 is the permittivity (dielectric constant)
of free space, and e is the magnitude of its charge. The quantity n is an integer
called the “principal quantum number,” and it takes positive non-zero values
1, 2, 3, etc. Later Arnold Sommerfeld (in 1916), and independently Peter
Debye, introduced two more quantum numbers l and m, which were called
the “orbital” and “magnetic” quantum numbers. While the principal quan-
tum number determines the radius (or size) of the orbit, the angular quantum
number l determines its shape. It also determines the angular momentum
associated with the orbital motion in units of ~. The integers n and l obey
the relation n ≥ l. If the atom is placed in a magnetic field, the component
of its angular momentum along the field takes on quantized values of m~.
The number m is an integer and satisfies the inequality −l ≤ m ≤ l. This
last inequality limits the number of m values to 2l + 1, and accordingly, the
number of allowed directions of the angular momentum vector in a magnetic
field is 2l + 1. This is known as space quantization of angular momentum.

The energy of an electron in an atom was thought to be determined by the
three quantum numbers n, l and m. When an electron makes a transition
from one energy state to another, the transition involves a change in one or
more of these quantum numbers. In the process of transition, the electron
absorbs or emits light of a particular frequency ν which is determined by
the energy difference between the initial and final states in accordance with
conservation of energy:

Efinal − Einitial = 2π~ν = hν, (1.1)

where Einitial and Efinal are the electron’s energy in the initial and final
states, respectively.

However, when an atom is placed in a magnetic field and the spectra of
emitted and absorbed light are measured, it is found that the multiplicity of
the spectra (meaning all the observed frequencies) cannot be explained by the
space quantization rules (that means allowed values of n, l, and m) alone. In
1920, Sommerfeld tried to explain the multiplicity by invoking yet another
quantum number j that he called the inner quantum number. However, this
was not able to completely explain multiplicity. Additional frequencies (where
each line split into two) were observed in a strong magnetic field; this was
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+ n=1, 
l=0

n=2,
l=1

FIGURE 1.2

The Bohr planetary model of electron orbits around the nucleus of an atom
(not to scale).

referred to as the anomalous Zeeman effect. This effect could not be explained
by space quantization.

1.3 Birth of “spin”

In 1925, the anomalous Zeeman effect led a young American scientist, Ralph
de Laer Kronig, to postulate that in addition to the orbital angular momen-
tum, an electron has an additional angular momentum caused by spinning
about its own axis. Kronig postulated that the angular momentum asso-
ciated with this self-rotation has a fixed magnitude of (1/2)~, although he
obviously had no explanation as to why the angular momentum should have
a fixed value, let alone why that value should be (1/2)~ (such is the nature
of a “postulate”). The correct explanation for these two features had to wait
for Dirac’s formulation, which is discussed later. However, such an angular
momentum will cause multiplicity in atomic spectra due to a relativistic ef-
fect. The rotating electron in an atom’s orbit experiences an electric field due
to the positively charged nucleus, which will transform into a magnetic field
~H via Lorentz transformation in the rest frame of the electron. The angular
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momentum will give rise to a magnetic moment ~M related to the angular mo-
mentum ~W by the Landé relation ~M = g0 ~W , where g0 is the so-called Landé
g-factor (Kronig assumed it to be 2, which is the correct value for vacuum).
The magnetic moment will interact with the magnetic field and the energy of
that interaction will be Eint = − ~M · ~H. Since the angular momentum has

two possible values ±(1/2)~, this will result in energy splitting of 2
∣∣∣ ~M · ~H

∣∣∣.
With this additional angular momentum, he was able to explain the multi-
plicity of spectra (within a factor of 2), and presented his idea to Wolfgang
Pauli, who was not impressed by it (Pauli had his own ideas to explain the
multiplicity of spectra, which later turned out to be wrong). Kronig himself
was not very confident because his calculations based on this spinning electron
model still did not completely explain every feature of the experimentally ob-
served spectra. More important, the idea of a self-rotating electron presents
a conundrum within the framework of classical theory. If one thinks of the
electron as a sphere of radius re = e2/(4πǫ0mc

2), as considered by Lorentz,
then the rotation rate required to produce an angular momentum of (1/2)~ is
so high that the electron’s surface reaches a speed more than 130 times that of
light in vacuum, in stark violation of Einstein’s theory of relativity! Because
of this apparent contradiction, Kronig never published his ideas. Six months
later, Uhlenbeck and Goudsmit published essentially the same spinning elec-
tron idea that Kronig had come up with in the journal Naturwissenschaften.
Actually, when they realized the problem with the surface speed (see Problem
1.2), they tried to hurriedly withdraw their paper, but it was too late. The
paper appeared in print. Kronig sent a letter to the British journal Nature
criticizing the idea of Uhlenbeck and Goudsmit, pointing out the problems
with the spinning electron model. Meanwhile, in a second paper that ap-
peared in Nature, Uhlenbeck and Goudsmit pointed out that their theory did
not quite explain the experimental observations of atomic spectra. In fact,
there was a discrepancy by a factor of 2 with the experimental results. Later
L. H. Thomas showed that this discrepancy comes about because of an incor-
rect definition of the electron rest system. An electron in an atom moves in a
closed orbit around the nucleus. Therefore, there is always a component of the
field perpendicular to the instantaneous velocity which causes an additional
acceleration in the direction perpendicular to the velocity. This is what causes
the electron trajectory to be curved. As a result, the electron is moving in
a rotating frame of reference and when this is ocrrectly taken into account,
it leads to the “factor of 2 correction”. Thomas published his findings in a
letter to Nature in February 1926, following which, all discrepancies between
theory and experiment could be resolved. This made a convert out of Pauli,
who ultimately endorsed the spinning electron idea of Kronig, Uhlenbeck and
Goudsmit (KUG).

The spinning electron picture remains in vogue, although it obviously raises
unanswered questions, such as why the spin angular momentum is quantized,
or why the idea cannot be reconciled with the postulates of the special theory
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FIGURE 1.3

Experimental arrangement of the Stern-Gerlach apparatus (not to scale).

of relativity. These unanswered questions merely reveal the inadequacy of the
model. The reader should be aware of this inadequacy, but that should not
affect her/his understanding of any of the topics discussed in this book.

1.4 The Stern-Gerlach experiment

At least three years before the KUG ideas were published, the spin of an
electron was already unwittingly measured in the famous Stern-Gerlach ex-
periment, which remains a watershed event in the history of spin. Otto Stern
and Walther Gerlach in Frankfurt, Germany, took the space quantization
business literally and designed an experiment to verify it. To them, the space
quantization business involved only the quantum numbers m, l, and n, but no
spin, since the spin idea had not yet been thought of by KUG. Space quan-
tization will dictate that the angular momentum of an electron in the Bohr
atom will be quantized to l~, and, because an orbiting electron will give rise
to a magnetic moment proportional to the angular momentum, the magnetic
moment will be quantized as well. Therefore, by measuring the magnetic mo-
ment of atoms and showing that it can assume only discrete values, it should
be possible to demonstrate space quantization.

Consider a beam of atoms coming out of an effusion furnace, going through
collimators and a magnetic field, and finally impinging on a detection plate,
as shown in Fig. 1.3. Assuming that an atom possesses a non-zero magnetic
moment ~µ due to the oribital angular momenta of its electrons, the magnetic
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field will produce two effects. First, the magnetic field will exert a torque
on the magnetic dipole of the atom and make the magnetic moment vector
precess about the magnetic field [3]. Second, the potential energy of the atom

will be U = −~µ · ~B = −µzB, if we assume that the magnetic field is directed
along the z-direction. Because of the spatial non-uniformity of the magnetic
field in the z-direction, the atoms will experience a z-directed force given by
[3]

Fz = −∂U
∂z

= µz
∂B(z)

∂z
. (1.2)

Classically, one would expect that, owing to random thermal effects, the
atoms in a beam will have their magnetic moment vectors pointing in different
directions, resulting in a continuous spread in the value of µz from –|µz | to
+|µz|. This will cause a continuous spread in Fz and therefore a continuous
spread in the deflection of the beam in the z-direction. If the beam then
impinges on a detection plate, one should see a continuous line on the plate
in the z-direction.

However, if space quantization holds sway, then the magnetic moment µz is
quantized and cannot assume any arbitrary value between -|µz| and +|µz|. It
is not clear why he thought this, but Stern was convinced that the magnetic
moment in the direction of the magnetic field (i.e., µz) will be quantized
to two values of opposite sign and therefore every atom will experience the
same magnitude of the deflecting force, except some will experience it in one
direction and the rest in the opposite direction. Therefore, an atomic beam
of hydrogen would split into two beams in a magnetic field, and, despite the
smearing effect of the inter-atomic collisions that exert a random force on
the atoms, they should split so far apart in a strong field that the oppositely
directed components would be deflected outside the width of the original
beam. If that happens, then one should observe two distinct beams that will
not produce a line on the detecting plate, but just two spots. This would
have been a remarkable experiment anyway, since classical theory predicted
a line. Thus, any birefringence (and observation of just two distinct spots)
would demonstrate that quantum physics supersedes classical physics, and it
would be a literal demonstration of space quantization, which is a quantum
mechanical phenomenon outside the realm of classical physics.

Bohr himself was not so convinced of his own model of the atom and did
not think one could take quantum physics so literally. He thought that space
quantization was a symbolic expression and convenient for calculating atomic
spectra, but could not be taken literally. However, Stern was fortunately not
dissuaded by Bohr and found a convert in Gerlach, who, until that time, had
apparently not heard of space quantization!

The actual Stern-Gerlach experiment took place a year after it was con-
ceived by Stern. It was not hydrogen atoms, but a beam of silver atoms
produced by the effusion of the metal from an oven heated to 1000◦C, that
was collimated by two narrow slits 0.03 mm wide. It traversed a magnet 3.5
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cm long that produced a magnetic flux density of 0.1 Tesla and a field gra-
dient of 10 Tesla/cm. The calculated splitting of the beam was only 0.2 mm
so that extreme alignment accuracy was required. When the experiment was
completed, Stern and Gerlach could not even see the traces of the silver beam
on the collector plate, so that it was impossible to determine if the splitting
was there. In an episode that has now become famous, Stern’s breath on the
plate made history. He used to smoke cigars and the sulfur from his breath
turned the silver into silver sulfide, which is jet black and is easily visible. The
results of this experiment, however, were still inconclusive and would not have
convinced a sceptic. After many efforts, Stern and Gerlach met in Göttingen
in 1922 and decided to give up. But a railroad strike detained Gerlach and he
attempted the experiment once again with improved accuracy of alignment.
Finally a clear signature of beam splitting was observed [4].

We now know that the Stern-Gerlach experiment had nothing to do with
space quantization, contrary to what they believed. In fact, Gerlach could
never reproduce the experiment with sodium atoms instead of silver atoms,
and Einstein questioned their interpretation (correctly). The agreement of
the experiment with Stern’s and Gerlach’s picture of space quantization (or
the Bohr model) was nothing but a coincidence. The net angular momentum
of silver atoms is actually zero, contrary to what was presumed by Stern and
Gerlach. The magnetic moment of Silver atoms is therefore due solely to
the spin angular momentum (and has nothing to do with the orbital angular
momentum), which accounts for the observed splitting of the beam into two.
Stern and Gerlach had unknowingly measured the spin angular momentum.
This is the first convincing experimental observation of “spin.”

It is surprising that, even though the Stern-Gerlach experiment was re-
ported in 1922 and was widely known among physicists, the postulation of
the electron spin in 1925 did not immediately lead to a re-interpretation of the
experiment as being a demonstration of the spin. The earliest attribution of
the splitting to spin was reported in 1927, when Ronald Fraser noted that the
ground state orbital angular momentum and associated magnetic moments of
silver, hydrogen and sodium atoms are zero. Therefore, obviously the splitting
could not be due to orbital angular momentum; it had to be due to “spin”.

In February, 2002, a team of physicists and chemists tried to re-enact the
Stern-Gerlach experiment with sulfur tainted breath and all [5]. For a hilarious
account of this re-enactment, see the December 2003 issue of the magazine
Physics Today. Mere sulfurous breath was not sufficient to reveal traces of
silver on a detecting plate, but direct exposure to cigar smoke was enough to
reveal the traces.
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1.5 Advent of spintronics

Although “spin” plays a fundamental role in explaining the multiplicity of
atomic spectra, this is not its most important role. It was realized in the mid-
dle of the 20th century that spin plays a fundamental role in magnetism. Ev-
ery theoretical model postulated to explain the physical origin of magnetism
invoked “spin” in some way or the other. This included the Bloch model,
the Heisenberg model, the Stoner model, and every other model advanced.
While magnetism remains the domain of spin, in the late 20th century, it
was realized that spin, alone or in conjunction with charge, can be harnessed
to process information, particularly digital information encoded with binary
bits 0 and 1. This is the central theme in the field of spintronics today (see,
for example, [6, 7]). Of course, spintronics is much more than just informa-
tion rendition and includes the more traditional areas of magnetoelectronics,
which deals with magnetic or magnetoresistive effects for sensing and storing
information. Early successes in this area include the developments of read
heads for sensing massively dense magnetic storage media (these read heads
are now routinely used in laptop computers and entertainment systems such
as Apple iPods), non-volatile magnetic random access memory (MRAM) [8],
programmable spintronic logic devices based on magnetic tunnel junction el-
ements [9], rotational speed control systems [10], positioning control devices
in robotics and related systems (such as automobile braking systems) [11],
perimeter defense systems, magnetometers, and high current monitoring de-
vices for power systems [12], etc. Many of these developments were fueled by
the investigation of how spin-polarized electric currents can be injected into
ferromagnetic/paramagnetic multilayers which, in the 1980s, had led to the
important discovery of the phenomenon of giant magnetoresistance (GMR)
[13, 14]. Several books and review articles have been written on magneto-
electronics [15, 16, 17, 18, 19, 20, 21]. The reader is referred to these books
to gain an understanding of magnetoelectronics. In this book, we will focus
more on the “information technology” (IT) applications of spin, which are the
basis of modern spintronics.

The application of spintronics in information technology, particularly for
computing and signal processing, is a relatively new field. Early efforts in
this area were concerned with developing spin-based analogs of conventional
signal processing devices such as transistors - both the field effect type [22,
23] and the bipolar junction type [24, 25]. In Spin Field Effect Transistors
(SPINFETs) or Spin Bipolar Junction Transistors (SBJTs), information is
still processed by modulating the charge current flowing between two terminals
via the application of either a voltage or a current at the third terminal.
However, the process by which the voltage or current at the third terminal
exercises control over device behavior is spin mediated. Therefore “spin”
plays somewhat of a secondary role in these devices, while “charge” retains
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the primary role. These devices are interesting and demonstrate how spin can
play a role in information handling. They are discussed in Chapter 14.

The more radical branch of spintronics is what we call single-spin spintron-
ics, where charge has no direct role and information is encoded entirely in the
spin polarization of a single electron, which is made to have only two values,
“up-spin” and “down-spin”, by placing the electron in a magnetic field. The
down-spin orientation could correspond to polarization parallel to the mag-
netic field and the up-spin orientation is anti-parallel to the magnetic field.
These two values could represent binary bits 0 and 1. Boolean logic circuits
can be fashioned from interacting single electron spins by properly engineer-
ing the interactions. An embodiment of this approach is the so-called “single
spin logic” (SSL) idea [28, 29] discussed in Chapter 15. What makes this idea
attractive is that bits can be flipped by simply toggling an electron’s spin,
without physically moving it in space and causing a current flow. This results
in much reduced heat dissipation in the circuits.

The ultimate rendition of spintronic computing circuits is spin-based quan-
tum computers, which dissipate no energy at all to complete a logic operation,
since they operate on the basis of reversible quantum dynamics. Recently,
there has been a great deal of interest in encoding a quantum bit (qubit) us-
ing the spin degree of freedom of a single electron confined in a quantum dot
[30, 31, 32, 33] or bound to a donor atom [34] or housed in a nitrogen vacancy
center in diamond [35, 36] to implement a quantum logic gate. The quan-
tum mechanical phase coherence of “spin” is much longer lived than that of
“charge”; consequently, spin is a natural choice for building solid state scal-
able quantum logic processors. Spin-based quantum computing is a rapidly
expanding field of research endeavor and Chapter 16 in this textbook discusses
some of the basic ideas in this field. Unfortunately, Chapter 16 will be almost
certainly outdated very quickly, perhaps even by the time this book appears
in print, since extremely rapid strides are being made in this field. Suffice it to
say then that spintronics is now poised at a critical juncture where technolog-
ical breakthroughs may be just around the corner. Therefore, understanding
the science and technology of spintronics has become imperative for students
of electrical engineering, physics, and materials science.

1.6 Problems

• Problem 1.1

Using the Bohr model of the hydrogen atom, show that the magnetic
moment associated with an electron moving in the lowest circular orbit
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is the Bohr magneton given by

µB =
e~

2m0
. (1.3)

Show also that the magnetic flux density Bn associated with the n-th
orbital is given by

µBBn =
1

4
(
α4Z4

n5
)moc

2 , (1.4)

where mo is the rest mass of the electron, c is the speed of light in
vacuum, Z is the atomic number of the atom, n is the principal quantum
number and α is the fine structure constant.

Calculate Bn in Tesla for the electron in the first orbit of the hydrogen
atom, i.e.,, Z=1, n=1. Use moc

2 ≈ 0.5MeV.

Solution

Consider a nucleus with Z protons. The total (kinetic + potential)
energy of an electron moving around this nucleus is conserved and is
given by:

E =
1

2
mov

2 − Ze2

4πǫor
, (1.5)

where e is the magnitude of the charge of the electron, v is the electron’s
orbital velocity, and ǫo is the dielectric constant of vacuum. The first
term in the right hand side is the kinetic energy of the electron and
the second term is the (electrostatic) potential energy. We ignore any
gravitational potential energy since it is negligible.

According to Newton’s Law, the centripetal force should be equal to the
Coulomb force; hence, we have:

mo
v2

r
=

Ze2

4πǫor2
. (1.6)

Using Bohr’s quantization condition for the angular momentum around
the nth orbit:

Ln = movnr = n~ , (1.7)

where the subscript n is the principal quantum number.

We get from Equations (1.6) and (1.7)

Lnvn =
Ze2

4πǫo
. (1.8)
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This yields

vn =
Ze2

4πǫo~

1

n
. (1.9)

We can compare this velocity to that of light and get

vn
c

=
Z

n

e2

4πǫo~c
, (1.10)

where the constant e2

4πǫo~c
= α and is referred to as the fine structure

constant.

Equation (1.10) shows that an electron in the first orbit (ground state)
of the hydrogen atom (Z = n = 1) has a velocity equal to α ≈ 1

137 times
the speed of light.

The radius of the various orbits allowed by Bohr’s space quantization
condition can then be obtained from Equation (1.7)

movnrn = n~ . (1.11)

We get

rn = (
4πǫo
Ze2

)(
n2

~
2

mo
) . (1.12)

This is also written as: rn = n2aZ , where aZ is the effective Bohr radius
given by

aZ =
4πǫo~

2

moZe2
. (1.13)

The latter is equal to 0.529 Å for the hydrogen atom (Z = 1).

The total energy of an electron in the n-th orbit is found from Equation
(1.5) and (1.9) to be

En =
1

2
movn

2 − Ze2

4πǫorn
= −moe

4Z2

32ǫo2~2
. (1.14)

This is the binding energy of the electron. It is also called the ionization
energy, since this is the minimum amount of energy that will be required
to liberate the electron from the nuclear attraction and make it free,
thereby ionizing the parent atom. This ionization energy is 13.6 eV for
the ground state of the hydrogen atom.

According to Biot-Savart’s law, an electron moving around the nucleus
in one of these orbits will feel a magnetic field given by



The Early History of Spin 13

~B =
~E × ~v

2c2
, (1.15)

where E is the electric field experienced by the moving electron and the
factor 2 is due to Thomas’s correction for a rotating frame of reference.

From Coulomb’s law, the electric field in the nth orbital is given by

En =
Ze

4πǫorn2
. (1.16)

Using Equations (1.9), (1.15), and (1.16), the magnitude of the magnetic
field in the n-th orbit is

| ~Bn| =
Envn
2c2

=
1

2c2
(

Ze

4πǫorn2
)vn (1.17)

and it is directed perpendicular to the orbital plane of the electron.

Finally, using Equations (1.12), (1.9) and (1.17) and the expression for
the Bohr magneton given, one finds that

µBBn =
1

4
(
α4Z4

n5
)moc

2 . (1.18)

From the above, the magnetic flux density associated with an electron
orbiting the hydrogen atom in the first orbit is 6.16 Tesla.

• Problem 1.2

Show that in the classical spinning electron model, the electron’s surface
speed must be more than 60 times the speed of light in order to produce
an angular momentum of (1/2)~. This is why, it is inappropriate to
think in classical terms that the spin of an electron is associated with
rotation about its own axis.

Solution

The angular momentum is

(1/2)m0vsre = (1/2)~ , (1.19)

where vs is the speed on the surface of the electron and re is the
Lorentz radius of the electron. Solving the above equation with uni-
versal constants m0 = 9.1×10−31 Kg, ~ = 1.05×10−34 Joules-sec, and
re = e2/(4πǫ0m0c

2) = 2.8 femtometers,

vs ≈ 134c. (1.20)

Therefore, the speed of rotation on the surface of the electron is more
than 130 times the speed of light.
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What does this apparent fallacy imply? It tells us that the concept of
spin is inherently quantum mechanical and cannot be described within
the framework of classical mechanics as done here. Furthermore, the
electron cannot be visualized as a nearly point charge with the Lorentz
radius.
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2

Quantum Mechanics of Spin

In the 1920s, the old quantum theory was gradually being superseded by the
new quantum theory. The cornerstone of the old theory was Bohr’s model of
the hydrogen atom, which predicted that an electron cannot orbit the proton
in the hydrogen atom in any arbitrary fashion. Orbits are “quantized,” mean-
ing that only certain sizes, shapes, and magnetic properties are allowed. The
principal quantum number n determined the allowed radii of the orbits, the
orbital quantum number l determined the allowed shapes, and the magnetic
quantum number m determined the magnetic behavior. Additionally, there is
a fourth quantum number s which denotes the fact that the electron has an
additional angular momentum, loosely associated with self rotation about its
own axis, and that is quantized in units of (1/2)~. The old quantum theory
was useful to infer the existence of discrete energy levels in atoms, calculate
energy spacings between these levels, and therefore allowed one to interpret
atomic spectra.

The new quantum theory appeared to be more revolutionary and more
powerful. It was triggered by Heisenberg’s discovery of matrix mechanics
and Schrödinger’s discovery of wave mechanics. These two formalisms would
not only predict the quantization of energy and provide a prescription to
determine the energy difference between the levels (and thus explain the mul-
tiplicity of atomic spectra), but also allow one to calculate easily probabili-
ties of transitions between different quantized energy states. At first, matrix
mechanics and wave mechanics looked entirely different in their mathemati-
cal appearance and physical meaning. However, Schrödinger and Eckart [1]
independently showed that the two theories are mathematically equivalent.
Toward the end of 1926, Dirac unified the two theories using the concept
of state vector and thus established the transformation theory of quantum
mechanics. This ultimately had a profound implication for the quantum me-
chanical (mathematical) recipe to treat spin, as we will show in this chapter.

The transformation theory is the mathematical recipe to handle modern
quantum mechanics. In Heisenberg’s matrix mechanics, a physical quantity
is expressed by a matrix, whereas in Schrödinger’s wave mechanics, a physi-
cal quantity is expressed by a linear operator. In the unified transformation
theory, physical quantities are represented by abstract linear operators called
Dirac’s q-numbers, which are linear operators in an infinite-dimensional lin-
ear space. Depending upon which types of orthogonal coordinate systems are
used in this linear space, either matrix mechanics or wave mechanics emerges.

17
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In other words, by using coordinate transformation in this linear space, we
can derive matrix mechanics from wave mechanics and vice versa. Therefore,
this unified theory was named transformation theory. The state of a quan-
tum mechanical object is represented by a so-called state vector, which is an
abstract vector in this linear space (the “wavefunction” in wave mechanics is
an example of this) and the linear space is called the state space.

Earlier D. Hilbert and J. von Neumann had introduced the notion of a
linear space that could absorb the mathematics of matrices and vectors, as
well as the mathematics of linear operators and functions. This so-called
Hilbert space admitted a finite or denumerably (countably) infinite number of
co-ordinate axes. Therefore, a state vector in the Hilbert space could have
at most a denumerably infinite number of mutually orthogonal components.
Dirac extended this concept to a non-denumerably infinite number of coordi-
nate axes in his linear space via the introduction of his famous δ-function [4].
The state vector therefore could have a non-denumerably infinite number of
mutually orthogonal components and could be expressed as

ψ(q), q ∈ [q1, q2] , (2.1)

where the variable q is a continuous variable in the domain [q1, q2]. On the
other hand, if the coordinate axes were countable, then the state vector would
be expressed as

ψn, n = 1, 2, 3, ... (2.2)

where the variable n is an integer.
According to Dirac’s transformation theory, the state vector (i) evolves in

time according to a unitary transformation, and (ii) satisfies a first order
differential equation with respect to time. This second property is very im-
portant, as we shall see later. Depending on whether the physical quantity∗

represented by the state vector will yield discrete or continuous values upon
measurement, the eigenvalues of the linear operator describing this physical
quantity will have discrete or continuous values. Accordingly, the coordinate
axes in the linear space will be discrete or continuous, and the state vector
will be ψn or ψ(q). The magnitude squared of the component of the state
vector, i.e.,, |ψn|2 or |ψ(q)|2 gives the probability of the physical quantity
taking on the n-th (or q-th) value when the quantity is measured. This is the
physical interpretation (or significance) of the state vector. Therefore, each
component of the state vector is called a probability amplitude. The familiar
“wavefunction” in the Schrödinger formalism of wave mechanics is the proba-
bility amplitude where the physical quantities corresponding to the coordinate
axes in linear space are the position coordinates and time, i.e.,,

ψ(~r) = ψ(x, y, z, t) . (2.3)

∗A physical quantity, by definition, is anything that can be measured, even if by a gedanken
experiment only.
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In wave mechanics, the Schrödinger equation for a single particle tells us
how the wavefunction evolves in time and space:

i~
∂ψ(~r)

∂t
= H0ψ(~r) . (2.4)

If we neglect spin, then

H0 =
|~p|2
2m

+ V (~r)

~p = pxx̂+ pyŷ + pzẑ = −i~ ∂
∂x

x̂− i~
∂

∂y
ŷ − i~

∂

∂z
ẑ,

~r = [xx̂ + yŷ + zẑ] , t (2.5)

where the quantities with “hats” are unit vectors along the coordinate axes.
Solution of Equation (2.4) yields the wavefunction ψ(~r). The quantity H0

is the so-called Hamiltonian whose first term is the kinetic energy and second
term is the potential energy. The only restriction is that the potential energy
term should be a real quantity so that the Hamiltonian remains a Hermitian
operator, which guarantees that its eigenvalue (which is its expected value
and therefore the expected value of the energy) remains a real quantity.

The question now is how to include “spin” in Equation (2.4)?
This was investigated by Wolfgang Pauli. He derived an equation to replace

Equation (2.4) which bears his name and is known as the Pauli Equation. But
before we discuss this equation, we need to understand an important concept,
namely, Pauli spin matrices, since they appear in the Pauli equation.

2.1 Pauli spin matrices

In quantum mechanics, any physical observable is associated with an operator
(which would be a linear operator in the Schrödinger formalism, or a matrix
in the Heisenberg formalism). The eigenvalues of the linear operator, or the
eigenvalues of the matrix, are the expectation values of the physical quan-
tity, i.e.,, the values we expect to find if we measure the physical quantity
in an experiment†. Spin is a physical observable since the associated angular
momentum can be measured, as was done unwittingly by Stern and Gerlach.
Consequently, there must be a quantum mechanical operator associated with
spin. Pauli derived the quantum mechanical operators for the spin compo-
nents along three orthogonal axes – Sx, Sy and Sz. They are 2×2 complex

†Repeated measurements of a physical observable will produce a distribution of values whose
average will be the expectation value.
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matrices that came to be known as the Pauli spin matrices. Pauli’s approach
was based on the premise that: (1) the measurement of the spin angular mo-
mentum component along any coordinate axis for an electron should give the
results +~

2 or −~

2 , and (2) the operators for spin components along three mu-
tually orthogonal axes should obey commutation rules similar to those obeyed
by the operators associated with components of the orbital angular momen-
tum. This would put spin angular momentum and orbital angular momentum
on the same footing.

The operators (matrices) for the orbital angular momentum are known to
satisfy the commutation relations

LyLz − LzLy = i~Lx,

LzLx − LxLz = i~Ly,

LxLy − LyLx = i~Lz, (2.6)

which merely reflect the fact that the orbital angular momenta along any two
mutually orthogonal axes cannot be simultaneously measured with absolute
precision unless the orbital angular momentum along a third axis, perpendic-
ular to both the other two axes, vanishes.

Pauli adopted similar commutation relations for the spin angular momen-
tum operators Sx, Sy and Sz :

SySz − SzSy = i~Sx,

SzSx − SxSz = i~Sy,

SxSy − SySx = i~Sz. (2.7)

Now, in the Stern-Gerlach experiment, assuming that the z-axis is the axis
joining the south to north pole of the magnet, the observation of two traces
on the photographic plate was interpreted as being caused by a spin angular
momentum ~S whose z-component has two values ±~

2 . Therefore, the ma-
trix operator Sz must be (i) a 2×2 matrix (because such a matrix has two
eigenvalues), and (ii) these eigenvalues must be ±~

2 .

A 2×2 matrix that has eigenvalues of ±~

2 is the matrix

M2×2 =
~

2

(
1 0
0 −1

)
. (2.8)

This is not the only 2×2 matrix with eigenvalues ±~

2 – there could be many
others – but this is the matrix that Pauli chose as a start for the operator Sz.

Next, he had to find appropriate matrices to serve as operators Sx and Sy.
Pauli realized that since the choice of the z-axis as the axis joining the north
and south poles of the magnet is completely arbitrary, the result of the Stern-
Gerlach measurement should not be affected if he had chosen this axis to be
the x- or y-axis, instead. This means that the expectation values of Sx and
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Sy, i.e.,, their eigenvalues, should also be ±~

2 . Moreover, all three matrices –
Sx, Sy and Sz – must satisfy the commutation relations in Equation (2.7).

Pauli first defined three dimensionless matrices σx, σy and σz such that

Sx =
~

2
σx,

Sy =
~

2
σy,

Sz =
~

2
σz. (2.9)

Since Sx, Sy and Sz must have eigenvalues of ±~

2 , it is obvious that the σ-
matrices must have eigenvalues of ±1. Furthermore, Equation (2.7) mandates
that

σyσz − σzσy = 2iσx,

σzσx − σxσz = 2iσy,

σxσy − σyσx = 2iσz. (2.10)

According to Equations (2.8) and (2.9),

σz =

(
1 0
0 −1

)
. (2.11)

So now Pauli needed to pick two matrices σx and σy such that they have
eigenvalues of ±1 and obey Equation (2.10). Since these matrices will be
operators for physical observables (spin components), they must be Hermitian
as well. It is easy to verify that σz is Hermitian.

We can start our search for σx and σy with Hermitian matrices that have
off-diagonal elements only, i.e.,

σx =

(
0 a
a∗ 0

)
, (2.12)

and

σy =

(
0 b
b∗ 0

)
. (2.13)

Since the eigenvalues of these matrices are ±1, we must have |a|2 = |b|2 =
1, which leads to the possible choices for a and b = ±1 or ±i.

Next, we must satisfy Equation (2.10) and that mandates

Im(ab∗) = 1, (2.14)

where Im stands for imaginary part.
Therefore, if we select a = +1, then we must choose b = –i, and this yields

σx =

(
0 1
1 0

)
, (2.15)
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and

σy =

(
0 −i
i 0

)
. (2.16)

This is how Pauli came up with expressions for σx, σy and σz . These
matrices are called Pauli spin matrices and serve as operators for the spin
components according to Equation (2.9).

It is obvious that Pauli’s choice was by no means unique. There are other
legitimate choices (e.g., we could have chosen a = –i and b = +1), but Pauli’s
choice is now history and universally adopted.

From the expressions for the Pauli spin matrices, we notice that the square
of each of the Pauli matrices is the 2×2 unit matrix [I]. Hence

|S|2 = S2
x + S2

y + S2
z =

3

4
~
2[I] = s(s+ 1)~2[I], (2.17)

with s = 1/2. This should be compared with the equivalent relation for the
orbital angular momentum operator

|L|2 = m(m+ 1)~2[I], m = 1, 2, 3... (2.18)

2.1.1 Eigenvectors of the Pauli matrices: Spinors

The eigenvalues of the Pauli spin matrices are ±1. We now evaluate the
corresponding eigenvectors that we denote as |± >.

Matrix σz: The eigenvectors of σz must satisfy

σz|± >z= ±1|± >z . (2.19)

These eigenvectors (with unit norm) will be

|+ >z=

(
1
0

)
, (2.20)

and

|− >z=

(
0
1

)
. (2.21)

It is easy to verify that these two eigenvectors are orthonormal, as they
must be since they are eigenvectors of a Hermitian matrix corresponding to
distinct (non-degenerate) eigenvalues.

Matrix σx: The eigenvectors of σx must satisfy

σx|± >x= ±1|± >x . (2.22)

Starting with Equation (2.15), these eigenvectors are found to be

|+ >x=
1√
2

(
1
1

)
, (2.23)
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and

|− >x=
1√
2

(
1
−1

)
. (2.24)

Once again, the two eigenvectors are orthonormal. As can be easily checked,
these eigenvectors can also be expressed as

|± >x=
1√
2
[|+ >z ±|− >z]. (2.25)

Matrix σy: The eigenvectors of σy must satisfy

σy |± >y= ±1|± >y . (2.26)

Using Equation (2.16), these eigenvectors are found to be

|+ >y=
1√
2

(
1
i

)
, (2.27)

and

|− >y=
1√
2

(
1
−i

)
. (2.28)

These eigenvectors are orthonormal and can be expressed as

|± >y=
1√
2
[|+ >z ±i|− >z]. (2.29)

The eigenvectors of the Pauli spin matrices are examples of “spinors” which
are 2 × 1 column vectors that represent the spin state of an electron. If we
know the spinor associated with an electron in a given state, we can deduce
the electron’s spin orientation, i.e., find the quantities < Sx >, < Sy > and
< Sz >, where the angular brackets < ... > denote expectation values. We
will see this later.

2.2 The Pauli equation and spinors

We can absorb the space and time dependent part of an electron’s wavefunc-
tion in the spinor, so that the general form of a spinor will be

[ψ(x)] =

[
φ1(x)
φ2(x)

]
, (2.30)

where x ≡ (x, y, z, t), and φ1 and φ2 are the two components of the spinor
wavefunction (assumed to be properly normalized).
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With a 2-component wavefunction, the Schrödinger equation must be recast
as {

[H ] +
~

i

∂

∂t
[I]

}
[ψ(x)] = [0] , (2.31)

where the Hamiltonian is a 2×2 matrix (since it may contain the 2×2 Pauli
spin matrices), [I] is the 2 × 2 identity matrix, and [0] is the 2 × 1 null
vector. Equation (2.31) is a set of two simultaneous differential equations for
the two components of the spinor wavefunction – φ1 and φ2. Equation (2.31)
is referred to as the Pauli equation [2].

Solution of the Pauli equation yields the two-component spinor wavefunc-
tion [ψ(x)]. Its practical use is in calculating the expected value of the spin
angular momentum of an electron along any coordinate axis. The expected
value along the n-th coordinate axis at location (~r0 = x0, y0, z0) at an instant
of time t will be [ψ(~r0, t)]

†[Sn][ψ(~r0, t)], where Sn = (~/2)σn and the super-
script † (dagger) represents the Hermitian conjugate. Using Equation (2.9),
we get

Sx(~r0, t) = (~/2)[ψ(~r0, t)]
† [σx] [ψ(x0, y0, z0, t)]

= (~/2) [φ∗1(~r0, t) φ
∗
2(~r0, t)]

[
0 1
1 0

] [
φ1(~r0, t)
φ2(~r0, t)

]

= ~Re [φ∗1(~r0, t)φ2(~r0, t)] ,

Sy(~r0, t) = (~/2) [ψ(~r0, t)]
†
[σy] [ψ(~r0, t)]

= (~/2) [φ∗1(~r0, t) φ
∗
2(~r0, t)]

[
0 −i
i 0

] [
φ1(~r0, t)
φ2(~r0, t)

]

= ~Im [φ∗1(~r0, t)φ2(~r0, t)] ,

Sz(~r0, t) = (~/2) [ψ(~r0, t)]
†
[σz ] [ψ(~r0, t)]

= (~/2) [φ∗1(~r0, t) φ
∗
2(~r0, t)]

[
1 0
0 −1

] [
φ1(~r0, t)
φ2(~r0, t)

]

= (~/2){|φ1(~r0, t)|2 − |φ2(~r0, t)|2} , (2.32)

where Re stands for the real part, Im stands for the imaginary part and the
superscript * (asterisk) represents complex conjugate.

Therefore, if we can find the 2-component wavefunction in Equation (2.30)
by solving the Pauli equation (2.31), then we can find the three components
of the expected value of the spin angular momentum at any location at any
instant of time. This is why the Pauli equation and the spinor concept are
useful and important. In Chapter 7, we will also show how the Pauli equation
can be used to derive the energy dispersion relations (relation between the
energy and the wavevector) of an electron in a solid in the presence of spin-
dependent effects.
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2.3 More on the Pauli equation

Referring to Equation (2.31), we ask what terms will the 2 × 2 Hamiltonian
[H ] contain. Normally, it will consist of three types of terms:

[H ] = H0[I] + [HB] + [HSO], (2.33)

where H0 is the spin-independent Hamiltonian, and [HB], [HSO] are 2 × 2
matrices that depend on spin and will therefore involve the Pauli spin matri-
ces.

To understand where [HB] comes from, consider the fact that if we view
“spin” as being associated with self-rotation of an electron about its axis, then
the self-rotation of the charged entity will give rise to a magnetic moment ~µe.
This magnetic moment will interact with any externally applied magnetic
field, if such a field is present. Let us say that the flux density associated with
the external field is ~B. Then the energy of interaction of ~µe with ~B is

Eint = −~µe · ~B. (2.34)

Landé had shown that the ratio of the magnetic moment ~µe (in units of the

Bohr magneton µB) to the angular momentum of self-rotation ~S (in units of ~)
is the so-called gyromagnetic factor g [3]. Therefore, the operator associated
with Eint is

[HB ] = −(g/2)µB
~B · ~σ, (2.35)

since ~S = (~/2)~σ, where ~σ = σxx̂+ σy ŷ + σz ẑ.
Obviously, the two eigenvalues of the matrix [HB ] will not be the same,

meaning that the eigenenergies associated with this Hamiltonian will not be
degenerate. Therefore, this term will cause spin-splitting, or lift the degener-
acy between the two spin states. This splitting is the Zeeman splitting. The
Hamiltonian [HB] is called the Zeeman Hamiltonian or the Zeeman interaction
term.

The Hamiltonian [HSO] is associated with spin-orbit interaction which also
lifts the spin degeneracy. This interaction is discussed in Chapter 6.

Finally, the general form of the Pauli equation is

{
H0[I] + [HB] + [HSO] +

~

i

∂

∂t
[I]

}
[ψ(x)] = [0]. (2.36)

Its solution yields the 2-component wavefunction [ψ(x)], which then yields
the spin components of an electron at any position and at any instant of time
from Equation (2.32). The Pauli Equation of course has many other uses, as
we will see later in Chapter 7.
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2.4 Extending the Pauli equation - the Dirac equation

The Pauli equation is completely non-relativistic and Pauli never found the
avenue to reconcile it with relativity. That task was completed by Paul An-
drew Maurice Dirac.

Both Schrödinger and two physicists, O. Klein and W. Gordon, had inde-
pendently derived a relativistic equivalent of the Schrödinger equation. This is
known as the Klein-Gordon equation [5]. A free particle not subjected to any
force has a constant potential energy which can be taken to be zero (since po-
tential is always undefined to the extent of an arbitrary constant). According
to Einstein’s special theory of relativity, such a particle obeys the relation

E
2
= p2c2 +m2

0c
4 , (2.37)

where E is the total energy and p is the momentum.
According to De Broglie‡,

E = hν,

p = h/λ , (2.38)

where ν is the frequency and λ is the wavelength of the De Broglie wave
associated with the particle (λ = cν). Therefore, the last equation can be
re-written as

ν2 −
( c
λ

)2
=

(
m0c

2

h

)2

. (2.39)

The above equation is known as the Einstein-De Broglie equation.
In the operator version of quantummechanics, the energy operator is i~(∂/∂t),

and the momentum operator (describing momentum along the xr axis) is
−i~(∂/∂xr). Therefore, the quantum mechanical representation of Equation
(2.37) is

[(
i~

∂

c∂t

)2

−
3∑

r=1

(
−i~ ∂

∂xr

)2

−m2
0c

2

]
ψ(x, y, z, t) = 0 . (2.40)

The above equation has the solution of a plane wave

ψ(x, y, z, t) = ei(
~k·~r−ωt),

ω = 2πν,
~k = (2π)/~λ,

~r = xx̂+ yŷ + zẑ . (2.41)

‡The De Broglie relation is reviewed in Chapter 18.
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Substituting this solution into Equation (2.40) immediately yields Equation
(2.39).

Equation (2.40) is valid for a free particle. Klein and Gordon extended it to
a particle subjected to a (time-dependent) force field. Let the time dependent

vector potential associated with the force field be ~A = (A0, Ax, Ay, Az), where
we have treated space and time on the same footing as mandated by the theory
of relativity. Klein and Gordon modified Equation (2.40) as

[(
i~

∂

c∂t
+ eA0

)2

−
3∑

r=1

(
−i~ ∂

∂xr
+ eAr

)2

−m2
0c

2

]
ψ(x, y, z, t) = 0.

(2.42)
The above equation is the Klein-Gordon Equation. For a time, it was

thought to be the fundamental equation of relativistic quantum mechanics.
Dirac, however, questioned the Klein-Gordon construct. This equation is

a second order differential equation with respect to time, and, according to
Dirac’s transformation theory, all meaningful equations of quantum mechanics
must be first order with respect to time (the Schrödinger and Pauli equations
are).

Dirac insisted on an equation that will be first order with respect to time.
Now, in relativity, space and time are treated as equivalent and therefore the
desired equation must also be first order with respect to space. Accordingly,
the sought after equation needs to have a form

[(
i~

∂

c∂t
+ eA0

)
−

3∑

r=1

αr

(
−i~ ∂

∂xr
+ eAr

)
− α0m0c

]
ψ(x, y, z, t) = 0.

(2.43)
When Dirac postulated the above equation, he simultaneously came up

with four new quantities α0 and αr (r = 1,2,3), and he also told us how to
determine them. He realized that a free particle without the vector potentials
A0 and Ar has to satisfy the Einstein-De Broglie Equation (Equation(2.39))
and therefore must satisfy Equation (2.40). In other words, the wavefunction
ψ(x, y, z, t) must be a solution of Equation (2.40). The latter equation is
second order in space and time, whereas Dirac’s Equation (Equation(2.43))
for a free particle,

[(
i~

∂

c∂t

)
−

3∑

r=1

αr

(
−i~ ∂

∂xr

)
− α0m0c

]
ψ(x, y, z, t) = 0, (2.44)

is first order.
In order to take the above equation for a free particle and make it second

order to match Equation (2.40), we apply it to the operator

[(
i~

∂

c∂t

)
+

3∑

r=1

αr

(
−i~ ∂

∂xr

)
+ α0m0c

]
, (2.45)
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to yield

[(
i~

∂

c∂t

)
+

3∑

r=1

αr

(
−i~ ∂

∂xr

)
+ α0m0c

]

·
[(

i~
∂

c∂t

)
−

3∑

r=1

αr

(
−i~ ∂

∂xr

)
− α0m0c

]
ψ(x, y, z, t) = 0. (2.46)

Dirac insisted that the above equation be Equation (2.40). This can only
happen if the quantities α0 and αr are not ordinary numbers, but matrices.
In that case, Equation (2.46) will become

[

(
i~

∂

c∂t

)2

−
3∑

r=1

{αr}2
(
−i~ ∂

∂xr

)2

−

∑

m<n

({αm}{αn} − {αn}{αm})(i~)2 ∂2

∂xmxn
− {α0}2m2

0c
2]ψ(x, y, z, t) = 0,

(2.47)

where the matrices {α0} and {αr} (r = 1, 2, 3) have the properties

{αm}2 = [I] (m = 0, 1, 2, 3),

{αm}{αn}+ {αn}{αm} = [0] (m 6= n;m,n = 0, 1, 2, 3). (2.48)

The simplest matrices that possess the properties listed in Equation (2.48)
are

{α0} =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 ,

{α1} =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

{α2} =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 ,

{α3} =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 . (2.49)
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When these 4 × 4 matrices are introduced into Equation (2.47), the wave-
function ψ(x, y, z, t) becomes a 4 × 1 column vector

ψ(x, y, z, t) =




ψ1

ψ2

ψ3

ψ4


 , (2.50)

so that Equation (2.47) becomes a set of four coupled differential equations
with respect to the four variables ψ1, ψ2, ψ3 and ψ4.

A little bit of inspection will quickly reveal that the Dirac matrices in Equa-
tion (2.49) can be written in terms of the Pauli spin matrices as

{α}0 =

[
I 0
0 −I

]
,

{α}1 =

[
0 σ1
σ1 0

]
,

{α}2 =

[
0 σ2
σ2 0

]
,

{α}3 =

[
0 σ3
σ3 0

]
, (2.51)

where I is a 2 × 2 identity matrix and 0 is a 2 × 2 null matrix.
Dirac applied his equation to the hydrogen atom and showed that the cor-

rect atomic level spacings can be obtained. More importantly, he showed that
the orbital angular momentum alone is not a conserved quantity, but when
the quantity represented by the operator

1

2

[
0 σ
σ 0

]
(2.52)

is added to it, the total quantity is conserved. Viewed from the perspective of
conservation of total angular momentum, this shows that an electron has spin
angular momentum given by the operator in Equation (2.52). This is the first
convincing theoretical demonstration of the existence of spin and hence Dirac
is credited with establishing the concept of spin rigorously. In the process,
he also demonstrated that spin angular momentum must be quantized to
two distinct values since the matrix in Equation (2.52) has two distinct and
discrete eigenvalues. Therefore, Dirac was able to explain spin quantization,
which the self-rotation model of the electron could never explain by itself.

Dirac also found that when an external force field is present, the procedure
used to obtain Equation (2.47) from Equation (2.44) does not yield the Klein-
Gordon equation (Equation (2.42)). The discrepancy can be explained by
taking into account the interaction of the spin magnetic moment with the
external field (recall the Zeeman interaction). Once this was demonstrated,
the concept of spin was established on a firm footing.
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2.4.1 Connection to Einstein’s relativistic equation

If we substitute the results of Equation (2.4) in Equation (2.43), the Dirac
equation reduces to

i~
∂

∂t
[ψ(x, y, z, t)] =



(
m0c

2 + V
)
I c~σ ·

(
~p+ e ~A

)

c~σ ·
(
~p+ e ~A

) (
−m0c

2 + V
)
I


 [ψ(x, y, z, t)]. (2.53)

where I is, once again, the 2×2 identity matrix.
Interpreting the operator i~∂/∂t as the energy operator Eop, the above

equation can be written as

Eop =



(
m0c

2 + V
)
I c~σ ·

(
~p+ e ~A

)

c~σ ·
(
~p+ e ~A

) (
−m0c

2 + V
)
I


 . (2.54)

When both vector and scalar potentials are absent, i.e., V = A = 0, we can
square both sides of the last equation to obtain

E
2

op =

[
m0c

2I c~σ · ~p
c~σ · ~σ −m0c

2I

]2

=
(
p2c2 +m2

0c
4
)



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (2.55)

which matches exactly Equation (2.37). Therefore, indeed the Dirac equation
is the relativistic version of the Schrödinger equation.

2.5 Time-independent Dirac equation

From Equation (2.53), it is straightforward to show that the time independent
Dirac equation will be




A 0 C D∗

0 A D −C
C D∗ B 0
D −C 0 B







ψ1

ψ2

ψ3

ψ4


 = E




ψ1

ψ2

ψ3

ψ4


 , (2.56)
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where the asterisk denotes complex conjugate and

A = m0c
2 + V

B = −m0c
2 + V

C = c(pz + eAz)

D = c[(px + eAx) + i(py + eAy)]. (2.57)

Equation (2.56) can be written more compactly as


 (m0c

2 + V )[I] c~σ ·
[
~p+ e ~A

]

c~σ ·
[
~p+ e ~A

]
(−m0c

2 + V )[I]



[
{ψ}(x, y, z)
{φ}(x, y, z)

]
= E

[
{ψ}(x, y, z)
{φ}(x, y, z)

]
,

(2.58)
where V is the scalar potential energy and

{ψ}(x, y, z) =
(
ψ1(x, y, z)
ψ2(x, y, z)

)
, (2.59)

and

{φ}(x, y, z) =
(
ψ3(x, y, z)
ψ4(x, y, z)

)
. (2.60)

From Equation (2.58), we can show that
{(
m0c

2 + V
)
[I] +

[
c~σ · (~p + e ~A)

] 1

E +m0c2 − V
[I]

[
c~σ · (~p+ e ~A)

]}
[ψ] = E[ψ],

{(
−m0c

2 + V
)
[I] +

[
c~σ · (~p+ e ~A)

] 1

E −m0c2 − V
[I]

[
c~σ · (~p + e ~A)

]}
[φ] = E[φ].

(2.61)

2.5.1 Non-relativistic approximation to the Dirac equation

Consider a non-relativistic electron moving at speeds much less than the speed
of light in vacuum. For such a particle, Equation (2.37) yields E ≈ m0c

2.
Using that result in the first of the two equations above yields




(
m0c

2 + V
)
[I] +

[
~σ · (~p+ e ~A)

]2

2m0





[ψ] = E[ψ], (2.62)

which reduces to

(
E −m0c

2
)
[ψ] = E[ψ] =

(
(~p+ e ~A)2

2m0
[I] + µB

~B · ~σ + V [I]

)
[ψ],

= {[H0] + [HB]} [ψ], (2.63)
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since [~σ · (~p+ e ~A)]2 = (~p+ e ~A)2[I] + 2m0µB
~B · ~σ (see Problem 2.5). Here E

is the total energy minus the rest energy m0c
2.

The second of the two equations in Equation (2.61) will yield the same
result as Equation (2.63) provided we make the transformation m0 → −m0.
This shows that the second equation applies to particles with negative mass,
namely, anti-matter. The existence of anti-matter is a foregone conclusion
from Equation (2.37). Noting that the De Broglie relation relates momentum
p to wavevector k of a particle as p = ~k, Equation (2.37) gives two disper-
sion relations E versus k. They are shown in Fig. 2.1. One branch has a
positive curvature and therefore positive mass. This corresponds to “mat-
ter.” The other has a negative curvature and therefore negative mass. That
corresponds to “anti-matter.” The energy separation between the two curves
is 2m0c

2, which is ∼ 1 MeV for a free electron. These energy scales are sel-
dom encountered in solid state physics, which is why anti-matter is usually of
concern only in high energy physics. We will not have any occasion to worry
about anti-matter anywhere in this textbook.

2.5.2 Relationship between the non-relativistic approxima-
tion to the Dirac equation and the Pauli equation

The reader will immediately recognize Equation (2.63) as the Pauli equa-
tion (Equation 2.33) without the spin-orbit interaction term. The latter term
does not arise here since, strictly speaking, spin-orbit interaction is a relativis-
tic effect and therefore cannot be captured within a non-relativistic picture.
However, what is amazing is that the Zeeman interaction term appears au-
tomatically, without having to introduce it separately. Therefore, Dirac was
able to explain the Zeeman interaction directly from his equation!

The spin-orbit interaction term is not beyond the Dirac equation, but it is
beyond the non-relativistic approximation since spin-orbit interaction has a
relativistic origin. If we make a binomial expansion of Equation (2.61) and
retain only the lowest order terms, then we get an equation [6]

[
|~p+ e ~A|2

2m0
+ V − |~p+ e ~A|4

8m3
0c

2
+

~

4im2
0c

2

(
~∇V · (~p+ e ~A)

)

+
~

4m2
0c

2

(
~∇V × (~p+ e ~A)

)
· ~σ
]
[ψ] = E[ψ], (2.64)

where the last term in the left hand side represents the spin-orbit interaction
term. Therefore, the Dirac equation incorporates the spin-orbit interaction
physics as well.
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1 MeV  

E

k

FIGURE 2.1

Dispersion relations for matter and anti-matter branches.



34 Introduction to Spintronics

2.6 Problems

• Problem 2.1

Show that the operators for Sx, Sy and Sz satisfy Equations (2.7) and
(2.17).

Solution

SxSy − SySx = (~2/4)

{[
0 1
1 0

] [
0 −i
i 0

]
−
[
0 −i
i 0

] [
0 1
1 0

]}
,

=

(
~

2

)2 [
2i 0
0 −2i

]
= i~

[
~

2
σz

]
= i~Sz. (2.65)

Furthermore,

|S|2 = S2
x + S2

y + S2
z ,

= (~2/4)

{[
0 1
1 0

]2
+

[
0 −i
i 0

]2
+

[
1 0
0 −1

]2}
,

= (3/4)~2
[
1 0
0 1

]
= (3/4)~2[I]. (2.66)

• Problem 2.2

Using Equation (2.32), show that if the 2-component spinor is the state
|+ >z given in Equation (2.20), then < Sx > = < Sy > = 0 and < Sz >
= ~/2. Also show that if the 2-component spinor is the state |− >z

given in Equation (2.21), then < Sx > = < Sy > = 0 and < Sz > =
-~/2. Hence the state |+ >z is referred to as the +z-polarized state and
the state |− >z is referred to as the –z-polarized state. This means that
an electron in these states has its spin polarized along the +z and –z
axes, respectively.
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Solution

For the state |+ >z, φ1 = 1 and φ2 = 0 in Equation (2.30).

From Equation (2.32)

< Sx >= ~Re(φ∗1φ2) = 0,

< Sy >= ~Im(φ∗1φ2) = 0,

< Sz >= (~/2)[|φ1|2 − |φ2|2] = ~/2. (2.67)

For the state |− >z, φ1 = 0 and φ2 = 1, hence

< Sx >= ~Re(φ∗1φ2) = 0,

< Sy >= ~Im(φ∗1φ2) = 0,

< Sz >= (~/2)[|φ1|2 − |φ2|2] = −~/2. (2.68)

Similarly, for the states |± >x, < Sx >= ±~

2 and < Sy >=< Sz >= 0,
so that these states are ±x-polarized states. One can show that the
states |± >y are ±y-polarized states.

• Problem 2.3

Show that if any 2×2 Hermitian matrix [H ] is used to perform a unitary
transformation of the Pauli matrices defined above, i.e., if matrices σx

′

,
σy

′

, σz
′

are defined such that

σn
′

= SσnS
−1, (2.69)

where S = eiH , for n = x, y, or z, the commutation rules in Equation
(2.7) are satisfied by the matrices σn

′

.

Furthermore, the square of each of the matrices σn
′

is equal to the 2×2
identity matrix.

Solution

The solution of this problem is left to the reader. Use the fact that the
matrix S is

[S] = [M ]−1

[
eiλ1 0
0 eiλ2

]
[M ], (2.70)

where λ1,2 are the eigenvalues of the matrix [H ], and [M ] is a 2×2
matrix whose two columns are the eigenfunctions of [H ] corresponding
to eigenvalues λ1 and λ2.

• Problem 2.4

Show the following properties of the Pauli spin matrices by actual com-
putation.
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1. det (σj) = −1; for j = x, y, or z.

2. Tr (σj) = 0.

3. σ2
x = σ2

y = σ2
z = I.

4. σxσyσz = iI.

5. σxσy = −σyσx = iσz.

6. σyσz = −σzσy = iσx.

7. σzσx = −σxσz = iσy.

8. σpσq + σqσp = 0, (p 6= q; p, q = x, y, z).

• Problem 2.5

Show that
[
~σ · (~p+ e ~A)

]2
= (~p+ e ~A)2[I] + 2m0µB

~B · ~σ.
Solution

[
~σ · (~p+ e ~A)

]2
= [σx(px + eAx) + σy(py + eAy) + σz(pz + eAz)]

× [σx(px + eAx) + σy(py + eAy) + σz(pz + eAz)] ,

= σ2
x(px + eAx)

2 + σ2
y(py + eAy)

2 + σ2
z(pz + eAz)

2

+σxσy(px + eAx)(py + eAy) + σyσx(py + eAy)(px + eAx)

σyσz(py + eAy)(pz + eAz) + σzσy(pz + eAz)(py + eAy)

σzσx(pz + eAz)(px + eAx) + σxσz(px + eAx)(pz + eAz).

(2.71)

Now the results of Problem 2.4 lead to
[
~σ · (~p+ e ~A)

]2
= (px + eAx)

2 + (py + eAy)
2 + (pz + eAz)

2

+iσz

(
−ie~∂Ay

∂x
+ ie~

∂Ax

∂y

)

+iσy

(
−ie~∂Ax

∂z
+ ie~

∂Az

∂x

)

+iσx

(
−ie~∂Az

∂y
+ ie~

∂Ay

∂z

)

= (px + eAx)
2 + (py + eAy)

2 + (pz + eAz)
2

+e~σz

(
∂Ay

∂x
− ∂Ax

∂y

)

+e~σy

(
∂Ax

∂z
− ∂Az

∂x

)

+e~σx

(
∂Az

∂y
− ∂Ay

∂z

)

=
[
~p+ e ~A

]2
+ e~

(
~∇× ~A

)
· ~σ, (2.72)
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where we have used the fact that ~pn = -i~(∂/∂~xn).

Since µB = e~/2m0 and ~B = ~∇× ~A, this proves the equality stated in
the problem.

• Problem 2.6

Show that the 4×4 Dirac matrices are related to the 2×2 Pauli matrices
as follows:

−i{α}0{α}2{α}3 =

(
σx 0
0 −σx

)

−i{α}0{α}3{α}1 =

(
σy 0
0 −σy

)

−i{α}0{α}1{α}2 =

(
σz 0
0 −σz

)
(2.73)

Show also that

{α}0{α}1 =

(
0 σx

−σx 0

)

{α}0{α}2 =

(
0 σy

−σy 0

)

{α}0{α}3 =

(
0 σz

−σz 0

)
(2.74)

• Problem 2.7

Show that when an electron’s or positron’s momentum ~k ≪ m0c, the
dispersion relations in Fig. 2.1 are approximately parabolic.

2.7 Appendix

2.7.1 Working with spin operators

Applying the operators σx, σy and σz to the 2-component wavefunction in
Equation (2.30) yields

σxψ(x) =

[
0 1
1 0

] [
φ1(x)
φ2(x)

]
,

σyψ(x) =

[
0 −i
i 0

] [
φ1(x)
φ2(x)

]
,

σzψ(x) =

[
1 0
0 1

] [
φ1(x)
φ2(x)

]
, (2.75)
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and therefore

Sxψ = (~/2)σxψ =
~

2

[
φ2(x)
φ1(x)

]
,

Syψ = (~/2)σxψ =
~

2

[
−iφ2(x)
iφ1(x)

]
,

Szψ = (~/2)σxψ =
~

2

[
φ1(x)
−φ2(x)

]
. (2.76)

Thus, operating with Sx interchanges the two components of the spinor,
operating with Sy interchanges the two components of the spinor while causing
a phase shift of –90◦ to the second component and a phase shift of 90◦ to the
first component, and operating with Sz introduces a phase shift of 180◦ to
the second component.

2.7.2 Two useful theorems

A trivial decomposition of any 2× 2 matrix M is obviously

M = m11

(
1 0
0 0

)
+m12

(
0 1
0 0

)
+m21

(
0 0
1 0

)
+m22

(
0 0
0 1

)
, (2.77)

since the four matrices on the right hand side form a complete basis for all
2×2 matrices. Now that we have introduced the Pauli spin matrices, a more
subtle decomposition of any 2×2 complex matrix can be found, as discussed
next.

Theorem I: Any 2× 2 matrix M

M =

(
m11 m12

m21 m22

)
(2.78)

can be decomposed as

M =
m11 +m22

2
I +

m11 −m22

2
σz +

m12 +m21

2
σx + i

m12 −m21

2
σy. (2.79)

The proof is left as an exercise. In other words, the 4 matrices (I, σx, σy, σz)
form a complete set of bases in the space of 2×2 complex matrices.

The last equation can be written in the more condensed form

M = aoI + ~a · ~σ, (2.80)

where

ao =
1

2
Tr(M), (2.81)

and

~a =
1

2
Tr(M~σ), (2.82)
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where ~σ = (σx, σy, σz), and Tr stands for the trace of the matrix.
A comparison of Equations (2.79) and (2.80) shows that M is Hermitian if

a0 and the three components of the vector ~a are real.

Exercise: Calculate the values of (a0, ~a) for the matrix M given by

M =

(
2 i

√
3

3
−i

√
3

3 4

)
. (2.83)

Next, we prove an identity which will be used in the next chapter to interpret
geometrically the Pauli matrices after the introduction of the Bloch sphere
concept.

Theorem II: If θ is real and if the matrix A is such that A2 = I, the following
identity holds:

eiθA = cosθI + isinθA. (2.84)

This is the generalization to operators of the well-known Euler relation for
complex numbers, i.e., eiz = cosz + isinz.

From the Taylor series expansion

ex =

∞∑

k=0

xk

k!
, (2.85)

and the definition of the function of an operator, we get

eiθA = I + (iθ)A+
(iθ)2A2

2!
+

(iθ)3A3

3!
+

(iθ)4A4

4!
+ ... (2.86)

or

eiθA = (1 − θ2

2!
+
θ4

4!
− ...+ (−1)k

θ2k

(2k)!
)I

+i(θ − θ3

3!
+
θ5

5!
− ...+ (−1)k

iθ2k+1

(2k + 1)!
)A, (2.87)

which is indeed Equation (2.84) if we use the the Taylor expansions

sinx =

∞∑

k=0

(−1)kx2k+1/(2k + 1)!, (2.88)

and

cosx =

∞∑

k=0

(−1)kx2k/(2k)!. (2.89)
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2.7.3 Applications of the Postulates of Quantum Mechanics to a
few spin problems

The Postulates of Quantum Mechanics are briefly reviewed in Chapter 18.

Example 1: If we measure the z-component of an electron’s spin, apply
the postulate of quantum projective measurement (Postulate 3) discussed in
Chapter 18 to calculate the probability of the measurement to give the result
~

2 or −~

2 , respectively, if prior to the measurement, the state of the system
|ψ > is either

(1) |0 >,
(2) |1 >, or
(3) 1√

2
(|0 > +|1 >),

where |0 > is the +z-polarized state |+ >z and |1 > is the -z-polarized state
|− >z.

Solution
(1) The operator Sz = ~

2σz has the spectral decomposition

Sz =
~

2
|0 >< 0|+ (−~

2
)|1 >< 1| =

∑

m

mPm, (2.90)

where Pm = |m >< m|, with |m > being the eigenvectors of Sz.

Hence, if |ψ >= |0 >, the probability of measuring +~

2 is equal to

p(+
~

2
) =< 0|(|0 >< 0|)|0 >= 1, (2.91)

and the probability of measuring −~

2 is equal to

p(−~

2
) =< 0|(|1 >< 1|)|0 >= 0 (2.92)

and the sum of the probabilities is indeed equal to unity.

(2) If |ψ >= |1 >, we get

p(
~

2
) =< 1|(|0 >< 0|)|1 >= 0, (2.93)

and

p(−~

2
) =< 1|(|1 >< 1|)|1 >= 1. (2.94)

(3) Finally, if |ψ >= 1√
2
(|0 > +|1 >), we find

p(+
~

2
) =

1√
2
{|0 > + < 1|}(|0 >< 0|) 1√

2
{|0 > + < 1|} =

1

2
{1+0}·{0+1} = 1

2
,

(2.95)
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and similarly, p(−~

2 ) =
1
2 .

According to Postulate 3 discussed in Chapter 18, right after the measure-
ment, the spinor collapses into the state

|ψ >→ |ψnew >=
(|0 >< 0|)√

p(+~

2 )
|ψ >= (

|0 >< 0|√
1
2

)(
(|0 > +|1 >)√

2
) = |0 > .

(2.96)

Exercise: Repeat the previous exercise if the component Sx is measured
instead.

Example 2: Suppose an electron is prepared in the spinor |0 > eigenstate
of Sz with eigenvalue +~

2 and repeated measurements are made of the x-
component of its intrinsic angular momentum; calculate the average value
< Sx > and the standard deviation ∆(Sx) of these measurements.

Solution
The spectral decomposition of the operator Sx is given by

Sx =
~

2

(
0 1
1 0

)
= (+

~

2
)|+ >x,x< +|+ (−~

2
)|− >x,x< −|, (2.97)

where |+ >x is the +x-polarized state and |− >x is the –x-polarized state.
Hence,

< Sx >=
~

2

[
< 0|Sx|0 >= (1 0)

(
0 1
1 0

)(
1
0

)]
= 0. (2.98)

Furthermore,

∆(Sx) =

√
< Sx

2 > − < Sx >2 =

√
< Sx

2 >,

=
~

2

[
< 0|

(
0 1
1 0

)(
0 1
1 0

)
|0 >

]1/2
,

=
~

2

[
(1 0)

(
0 1
1 0

)(
0 1
1 0

)(
1
0

)]1/2
=

~

2
. (2.99)

Example 3: Suppose an electron is characterized by the spinor

|ψ >= 1√
10

(
3
−1

)
, (2.100)

which is properly normalized, as easily checked. If we measure the y-component
of the spin, what is the probability of finding that its value is ~

2 ?
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Solution

The eigenvector of σy are 1√
2

(
1
i

)
with eigenvalue +1 and 1√

2

(
1
−i

)
with

eigenvalue –1
Hence, if we write the spinor |ψ > as a linear combination of |+ >y and

|− >y,

|ψ >= 1√
10

(
3
−1

)
= α

1√
2

(
1
i

)
+ β

1√
2

(
1
−i

)
. (2.101)

The probability of finding +~

2 when measuring Sy is given by |α|2 or

p(+
~

2
) = |y < +|ψ >|2 =

∣∣∣∣
1√
2
(1, −i) 1√

10

(
3
−1

)∣∣∣∣
2

=
1

20
|(3 + i)|2 =

1

2
.

(2.102)

Example 4: Suppose an electron is characterized by the spinor

|ψ >= 4

5
|0 > +

3

5
|1 > . (2.103)

(1) What is the probability that a measurement of z-component of the spin
will be +~

2? and −~

2 ?

Solution

p(+
~

2
) =

∣∣∣∣< 0|(4
5
|0 > +

3

5
|1 >)

∣∣∣∣
2

=
16

25
, (2.104)

and

p(
−~

2
) =

∣∣∣∣< 1|(4
5
|0 > +

3

5
|1 >)

∣∣∣∣
2

=
9

25
. (2.105)

(2) What is the expectation value of Sz = ~

2σz?

Solution

< ψ|Sz|ψ > =

(
4

5
< 0|+ 3

5
< 1|

)
~

2
σz

(
4

5
|0 > +

3

5
|1 >

)
,

=
16

25
< 0|σz|0 >

~

2
+

(
3

5

)2
~

2
< 1|σz|1 >=

16

25

(
~

2

)
− 9

25

(
~

2

)
,

=
7

25

(
~

2

)
. (2.106)

(3) What is the standard deviation of Sz if measurements are made on
many electrons prepared in the state |ψ > above?


