-8%
124,99 €
Statt 135,99 €**
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 135,99 €**
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 135,99 €**
-8%
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 135,99 €**
-8%
124,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: ePub


Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 30.7MB
Produktbeschreibung
Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 752
  • Erscheinungstermin: 02.03.2012
  • Englisch
  • ISBN-13: 9781118148181
  • Artikelnr.: 37352502
Autorenporträt
Larry A. Coldren is the Fred Kavli Professor ofOptoelectronics and Sensors at the University of California, SantaBarbara. He has authored or coauthored over a thousand journal andconference papers, seven book chapters, and a textbook, and hasbeen issued sixty-three patents. He is a Fellow of the IEEE, OSA,and IEE, the recipient of the 2004 John Tyndall and 2009 AronKressel Awards, and a member of the National Academy ofEngineering. Scott W. Corzine obtained his PhD from the University ofCalifornia, Santa Barbara, Department of Electrical and ComputerEngineering, for his work on vertical-cavity surface-emittinglasers (VCSELs). He worked for ten years at HP/Agilent Laboratoriesin Palo Alto, California, on VCSELs, externally modulated lasers,and quantum cascade lasers. He is currently with Infinera inSunnyvale, California, working on photonic integrated circuits. Milan L. Mashanovitch obtained his PhD in the field ofphotonic integrated circuits at the University of California, SantaBarbara (UCSB), in 2004. He has since been with UCSB as a scientistworking on tunable photonic integrated circuits and as an adjunctprofessor, and with Freedom Photonics LLC, Santa Barbara, which hecofounded in 2005, working on photonic integrated circuits.
Inhaltsangabe
Preface xvii Acknowledgments xxi List of Fundamental Constants xxiii 1 Ingredients 1 1.1 Introduction 1 1.2 Energy Levels and Bands in Solids 5 1.3 Spontaneous and Stimulated Transitions: The Creation of Light 7 1.4 Transverse Confinement of Carriers and Photons in Diode Lasers: The Double Heterostructure 10 1.5 Semiconductor Materials for Diode Lasers 13 1.6 Epitaxial Growth Technology 20 1.7 Lateral Confinement of Current, Carriers, and Photons for Practical Lasers 24 1.8 Practical Laser Examples 31 References 39 Reading List 40 Problems 40 2 A Phenomenological Approach to Diode Lasers 45 2.1 Introduction 45 2.2 Carrier Generation and Recombination in Active Regions 46 2.3 Spontaneous Photon Generation and LEDs 49 2.4 Photon Generation and Loss in Laser Cavities 52 2.5 Threshold or Steady
State Gain in Lasers 55 2.6 Threshold Current and Power Out Versus Current 60 2.7 Relaxation Resonance and Frequency Response 70 2.8 Characterizing Real Diode Lasers 74 References 86 Reading List 87 Problems 87 3 Mirrors and Resonators for Diode Lasers 91 3.1 Introduction 91 3.2 Scattering Theory 92 3.3 S and T Matrices for Some Common Elements 95 3.4 Three
and Four
Mirror Laser Cavities 107 3.5 Gratings 113 3.6 Lasers Based on DBR Mirrors 123 3.7 DFB Lasers 141 References 151 Reading List 151 Problems 151 4 Gain and Current Relations 157 4.1 Introduction 157 4.2 Radiative Transitions 158 4.3 Optical Gain 174 4.4 Spontaneous Emission 192 4.5 Nonradiative Transitions 199 4.6 Active Materials and Their Characteristics 218 References 238 Reading List 240 Problems 240 5 Dynamic Effects 247 5.1 Introduction 247 5.2 Review of Chapter 2 248 Case (i): Well Below Threshold 251 Case (ii): Above Threshold 252 Case (iii): Below and Above Threshold 253 5.3 Differential Analysis of the Rate Equations 257 5.4 Large
Signal Analysis 276 5.5 Relative Intensity Noise and Linewidth 288 5.6 Carrier Transport Effects 308 5.7 Feedback Effects and Injection Locking 311 References 328 Reading List 329 Problems 329 6 Perturbation, Coupled
Mode Theory, Modal Excitations, and Applications 335 6.1 Introduction 335 6.2 Guided
Mode Power and Effective Width 336 6.3 Perturbation Theory 339 6.4 Coupled
Mode Theory: Two
Mode Coupling 342 6.5 Modal Excitation 376 6.6 Two Mode Interference and Multimode Interference 378 6.7 Star Couplers 381 6.8 Photonic Multiplexers, Demultiplexers and Routers 382 6.9 Conclusions 390 References 390 Reading List 391 Problems 391 7 Dielectric Waveguides 395 7.1 Introduction 395 7.2 Plane Waves Incident on a Planar Dielectric Boundary 396 7.3 Dielectric Waveguide Analysis Techniques 400 7.4 Numerical Techniques for Analyzing PICs 427 7.5 Goos
Hanchen Effect and Total Internal Reflection Components 434 7.6 Losses in Dielectric Waveguides 437 References 445 Reading List 446 Problems 446 8 Photonic Integrated Circuits 451 8.1 Introduction 451 8.2 Tunable, Widely Tunable, and Externally Modulated Lasers 452 8.3 Advanced PICs 484 8.4 PICs for Coherent Optical Communications 491 References 499 Reading List 503 Problems 503 APPENDICES 1 Review of Elementary Solid
State Physics 509 A1.1 A Quantum Mechanics Primer 509 A1.2 Elements of Solid
State Physics 516 References 527 Reading List 527 2 Relationships between Fermi Energy and Carrier Density and Leakage 529 A2.1 General Relationships 529 A2.2 Approximations for Bulk Materials 532 A2.3 Carrier Leakage Over Heterobarriers 537 A2.4 Internal Quantum Efficiency 542 References 544 Reading List 544 3 Introduction to Optical Waveguiding in Simple Double
Heterostructures 545 A3.1 Introduction 545 A3.2 Three
Layer Slab Dielectric Waveguide 546 A3.3 Effective Index Technique for Two
Dimensional Waveguides 551 A3.4 Far Fields 555 References 557 Reading List 557 4 Density of Optical Modes, Blackbody Radiation, and Spontaneous Emission Factor 559 A4.1 Optical Cavity Modes 559 A4.2 Blackbody Radiation 561 A4.3 Spontaneous Emission Factor, ²sp 562 Reading List 563 5 Modal Gain, Modal Loss, and Confinement Factors 565 A5.1 Introduction 565 A5.2 Classical Definition of Modal Gain 566 A5.3 Modal Gain and Confinement Factors 568 A5.4 Internal Modal Loss 570 A5.5 More Exact Analysis of the Active/Passive Section Cavity 571 A5.6 Effects of Dispersion on Modal Gain 576 6 Einstein's Approach to Gain and Spontaneous Emission 579 A6.1 Introduction 579 A6.2 Einstein A and B Coefficients 582 A6.3 Thermal Equilibrium 584 A6.4 Calculation of Gain 585 A6.5 Calculation of Spontaneous Emission Rate 589 Reading List 592 7 Periodic Structures and the Transmission Matrix 593 A7.1 Introduction 593 A7.2 Eigenvalues and Eigenvectors 593 A7.3 Application to Dielectric Stacks at the Bragg Condition 595 A7.4 Application to Dielectric Stacks Away from the Bragg Condition 597 A7.5 Correspondence with Approximate Techniques 600 A7.6 Generalized Reflectivity at the Bragg Condition 603 Reading List 605 Problems 605 8 Electronic States in Semiconductors 609 A8.1 Introduction 609 A8.2 General Description of Electronic States 609 A8.3 Bloch Functions and the Momentum Matrix Element 611 A8.4 Band Structure in Quantum Wells 615 References 627 Reading List 628 9 Fermi's Golden Rule 629 A9.1 Introduction 629 A9.2 Semiclassical Derivation of the Transition Rate 630 Reading List 637 Problems 638 10 Transition Matrix Element 639 A10.1 General Derivation 639 A10.2 Polarization
Dependent Effects 641 A10.3 Inclusion of Envelope Functions in Quantum Wells 645 Reading List 646 11 Strained Bandgaps 647 A11.1 General Definitions of Stress and Strain 647 A11.2 Relationship Between Strain and Bandgap 650 A11.3 Relationship Between Strain and Band Structure 655 References 656 12 Threshold Energy for Auger Processes 657 A12.1 CCCH Process 657 A12.2 CHHS and CHHL Processes 659 13 Langevin Noise 661 A13.1 Properties of Langevin Noise Sources 661 A13.2 Specific Langevin Noise Correlations 665 A13.3 Evaluation of Noise Spectral Densities 669 References 672 Problems 672 14 Derivation Details for Perturbation Formulas 675 Reading List 676 15 Multimode Interference 677 A15.1 Multimode Interference
Based Couplers 677 A15.2 Guided
Mode Propagation Analysis 678 A15.3 MMI Physical Properties 682 Reference 683 16 The Electro
Optic Effect 685 References 692 Reading List 692 17 Solution of Finite Difference Problems 693 A17.1 Matrix Formalism 693 A17.2 One
Dimensional Dielectric Slab Example 695 Reading List 696 Index 697