A Course in Homological Algebra - Hilton, Peter J.;Stammbach, Urs
46,99 €
versandkostenfrei*

inkl. MwSt.
Versandfertig in 6-10 Tagen
23 °P sammeln
  • Broschiertes Buch

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included. …mehr

Produktbeschreibung
Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.
  • Produktdetails
  • Graduate Texts in Mathematics 4
  • Verlag: Springer / Springer New York / Springer, Berlin
  • 2. Aufl.
  • Seitenzahl: 384
  • Erscheinungstermin: 3. September 2012
  • Englisch
  • Abmessung: 235mm x 155mm x 20mm
  • Gewicht: 587g
  • ISBN-13: 9781461264385
  • ISBN-10: 1461264383
  • Artikelnr.: 36937114
Inhaltsangabe
I. Modules.- 1. Modules.- 2. The Group of Homomorphisms.- 3. Sums and Products.- 4. Free and Projective Modules.- 5. Projective Modules over a Principal Ideal Domain.- 6. Dualization, Injective Modules.- 7 Injective Modules over a Principal Ideal Domain.- 8. Cofree Modules.- 9. Essential Extensions.- II. Categories and Functors.- 1. Categories.- 2. Functors.- 3. Duality.- 4. Natural Transformations.- 5. Products and Coproducts; Universal Constructions.- 6. Universal Constructions (Continued); Pull-backs and Push-outs.- 7. Adjoint Functors.- 8. Adjoint Functors and Universal Constructions.- 9. Abelian Categories.- 10. Projective, Injective, and Free Objects.- III. Extensions of Modules.- 1. Extensions.- 2. The Functor Ext.- 3. Ext Using Injectives.- 4. Computation of some Ext-Groups.- 5. Two Exact Sequences.- 6. A Theorem of Stein-Serre for Abelian Groups.- 7. The Tensor Product.- 8. The Functor Tor.- IV. Derived Functors.- 1. Complexes.- 2. The Long Exact (Co) Homology Sequence.-