204,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
102 °P sammeln
  • Gebundenes Buch

Ions are ubiquitous in chemical, technological, ecological and biological processes. Characterizing their role in these processes requires in the first place the evaluation of the thermodynamic parameters associated with the solvation of a given ion. However, due to the constraint of electroneutrality, the involvement of surface effects and the ambiguous connection between microscopic and macroscopic descriptions, the determination of single-ion solvation properties via both experimental and theoretical approaches turns out to be a very difficult and highly controversial problem. This unique…mehr

Produktbeschreibung
Ions are ubiquitous in chemical, technological, ecological and biological processes. Characterizing their role in these processes requires in the first place the evaluation of the thermodynamic parameters associated with the solvation of a given ion. However, due to the constraint of electroneutrality, the involvement of surface effects and the ambiguous connection between microscopic and macroscopic descriptions, the determination of single-ion solvation properties via both experimental and theoretical approaches turns out to be a very difficult and highly controversial problem. This unique book provides an up-to-date, compact and consistent account of the research field of single-ion solvation thermodynamics that has over one hundred years of history and still remains largely unsettled. By reviewing the various approaches employed to date, establishing the relevant connections between single-ion thermodynamics and electrochemistry, resolving conceptual ambiguities, and giving an exhaustive data compilation (in the context of alkali and halide hydration), this book provides a consistent synthesis, in-depth understanding and clarification of a large and sometimes very confusing research field. Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities is primarily aimed at researchers (professors, postgraduates, graduates, and industrial researchers) concerned with processes involving ionic solvation properties (these are ubiquitous, eg. in physical/organic/analytical chemistry, electrochemistry, biochemistry, pharmacology, geology, and ecology). Because of the concept definitions and data compilations it contains, it is also a useful reference book to have in a university library. Finally, it may be of general interest to anyone wanting to learn more about ions and solvation.
Autorenporträt
Philippe Hünenberger, previously Assistant Professor, is now a Senior Scientist at the Institute of Physical Chemistry, ETH Zürich (ETHZ). He completed his undergraduate studies at the University of Lausanne and his PhD at ETHZ followed by a period of time at UCSD, San Diego as a post-doctoral fellow. He has received numerous undergraduate and graduate awards including the Ruzicka Prize in 2008 and has been awarded a number of research grants. With countless published papers and oral presentations at key international conferences, he is regarded as a world renowned expert in his field. Maria Reif is at the Institute of Physical Chemistry, ETH Zürich (ETHZ). She completed her Bachelor studies at the Technische Universitõt, München and her Master studies in Molecular Modelling in the Theoretical Chemistry Group at the University of Cardiff. She recently finished her PhD in the Group for Computer-Assisted Chemistry at ETHZ. Her research interests are in the properties of single ions in solution (free energies of solvation and its derivative properties); parameterisation of ions against (methodology-independent) hydration free energies; testing of ion parameter sets to validate a value for the proton hydration free energy; asymmetric solvation effects in different solvents and approximate-electrostatics artefacts on charge-charge interactions.