63,95 €
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
63,95 €
63,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
Als Download kaufen
63,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
Jetzt verschenken
63,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
  • Format: PDF

Based on recent research and the latest developments, this book presents techniques and applications of ultra-short pulse lasers. It describes principal methods for mode-locking of lightwave and provides the operations of the laser source in both linear and nonlinear regimes. The book discusses the fundamental aspects for understanding the phenomena of lightwave pulse sequence whose width is extremely short. It also covers applications of such laser source in high-speed communication systems and networks are described so that readers can be familiar with technological development for next generations of the optical Internet.…mehr

Produktbeschreibung
Based on recent research and the latest developments, this book presents techniques and applications of ultra-short pulse lasers. It describes principal methods for mode-locking of lightwave and provides the operations of the laser source in both linear and nonlinear regimes. The book discusses the fundamental aspects for understanding the phenomena of lightwave pulse sequence whose width is extremely short. It also covers applications of such laser source in high-speed communication systems and networks are described so that readers can be familiar with technological development for next generations of the optical Internet.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Le Nguyen Binh received his BE (Hons) and Ph.D degrees in electronic engineering and integrated photonics in 1975 and 1980, respectively, from the University of Western Australia, Nedlands, Western Australia. In 1980, he joined the Department of Electrical Engineering at Monash University, Clayton, Victoria, Australia, after a three-year period with Commonwealth Scientific and Industrial Research Organisation (CSIRO), Camberra, Australia, as a research scientist. In 1995, he was appointed as reader at Monash University. He has worked in the Department of Optical Communications of Siemens AG Central Research Laboratories in Munich, Germany, and in the Advanced Technology Centre of Nortel Networks at Harlow, United Kingdom. He has also served as a visiting professor of the Faculty of Engineering of Christian Albrechts University of Kiel, Germany. Dr. Binh has published more than 250 papers in leading journals and refereed conferences, and three books in the field of photonic signal processing and optical communications: the first is Photonic Signal Processing, the second is Digital Optical Communications and the third on Optical Fiber Communications Systems (both published by CRC Press, Boca Raton, Florida). His current research interests are in advanced modulation formats for long haul optical transmission, electronic equalization techniques for optical transmission systems, ultrashort pulse lasers, and photonic signal processing.

Nam Quoc Ngo received his BE and PhD degrees in electrical and computer systems engineering from Monash University, Melbourne, Victoria, Australia, in 1992 and 1998, respectively. From July 1997 to July 2000, he was a lecturer at Griffith University, Brisbane, Queensland, Australia. Since July 2000, he has been with the School of Electrical and Electronic Engineering (EEE), Nanyang Technological University, Singapore, where he is presently an associate professor. Since March 2009, he has been the deputy director of the Photonics Research Centre at the School of EEE. Among his other significant contributions, he has pioneered the development of the theoretical foundations of arbitrary order temporal optical differentiators and arbitrary-order temporal optical integrators, which resulted in the creation of these two new research areas. He has also pioneered the development of a general theory of the Newton- Cotes digital integrators, from which he has designed a wideband integrator and a wideband differentiator known as the Ngo integrator and the Ngo differentiator, respectively, in the literature. His current research interests are on the design and development of fiber-based and waveguide-based devices for application in optical communication systems and optical sensors. He has published more than 110 international journal papers and over 60 conference papers in these areas. He received two awards for outstanding contributions in his PhD dissertation. He is a senior member of IEEE.