96,95 €
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
48 °P sammeln
96,95 €
96,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
48 °P sammeln
Als Download kaufen
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
48 °P sammeln
Jetzt verschenken
96,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
48 °P sammeln
  • Format: ePub

Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 42.11MB
Produktbeschreibung
Scheduling and Operation of Virtual Power Plants: Technical Challenges and Electricity Markets provides a multidisciplinary perspective on recent advances in VPPs, ranging from required infrastructures and planning to operation and control. The work details the required components in a virtual power plant, including smartness of power system, instrument and information and communication technologies (ICTs), measurement units, and distributed energy sources. Contributors assess the proposed benefits of virtual power plant in solving problems of distributed energy sources in integrating the small, distributed and intermittent output of these units. In addition, they investigate the likely technical challenges regarding control and interaction with other entities.

Finally, the work considers the role of VPPs in electricity markets, showing how distributed energy resources and demand response providers can integrate their resources through virtual power plant concepts to effectively participate in electricity markets to solve the issues of small capacity and intermittency. The work is suitable for experienced engineers, researchers, managers and policymakers interested in using VPPs in future smart grids.

  • Explores key enabling technologies and infrastructures for virtual power plants in future smart energy systems
  • Reviews technical challenges and introduces solutions to the operation and control of VPPs, particularly focusing on control and interaction with other power system entities
  • Introduces the key integrating role of VPPs in enabling DER powered participative electricity markets

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ali Zanganeh is Associate Professor of Electrical Engineering at Shahid Rajaee Teacher Training University, Lavizan, Tehran. He received his Ph.D. degree in electrical engineering from Iran University of Science and Technology (IUST) in 2010. His research interests include demand side management, smart grid, resiliency, distributed generation and optimization in power systems.

Moein Moeini-Aghtaie is Assistant Professor of Electical Engineering at Sharif University of Technology, Tehran, Iran. He received the M.Sc. and Ph.D. degrees from the Sharif University of Technology, Tehran, Iran, in 2010 and 2014, respectively, both in electrical engineering. His current research interests include reliability and resilience studies of modern distribution systems, especially in the multi-carrier energy environment, and charging management of plug-in hybrid electric vehicles.