81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
Jetzt verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
  • Format: ePub

Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 102.41MB
Produktbeschreibung
Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike.

  • Presents new approaches in the field, along with further research opportunities, based on the latest satellite data
  • Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences
  • Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Tanvir Islam is presently with the NASA Jet Propulsion Laboratory, and specializes in remote sensing observations. Currently, he is engaged with the development of advanced microwave calibration and retrieval algorithms for NASA's Earth observing missions.

Prior to joining NASA/JPL in 2015, he was with the NOAA/NESDIS/STAR, and worked on the development of satellite remote sensing algorithms, with an emphasis on microwave variational inversion techniques (2013-2015). He also held visiting scientist positions at the University of Tokyo, as part of the NASA/JAXA precipitation measurement missions (PMM) algorithm development team, in 2012, and at the University of Calgary, in 2015. He received the Ph.D. degree in remote sensing from the University of Bristol, Bristol, UK, in 2012.

Dr. Islam was the recipient of the Faculty of Engineering Commendation from the University of Bristol (nominated for a University Prize for his outstanding Ph.D. thesis), in 2012, the JA

XA visiting fellowship award, in 2012, the CIRA postdoctoral fellowship award, in 2013, the Calgary visiting fellowship award, in 2015, and the Caltech postdoctoral scholar award, in 2015. He has served as a lead guest editor for a special issue on "Microwave Remote Sensing? for the Physics and Chemistry of the Earth (Elsevier), and currently serving on the editorial board of Atmospheric Measurement Techniques (EGU) and Scientific Reports (Nature). He has published four books and more than 60 peer-reviewed papers in leading international journals. His primary research interests include microwave remote sensing, radiometer calibration, retrieval algorithms, radiative transfer theory, data assimilation, mesoscale modeling, cloud and precipitation system, and artificial intelligence in geosciences.