34,95 €
34,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
17 °P sammeln
34,95 €
34,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
17 °P sammeln
Als Download kaufen
34,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
17 °P sammeln
Jetzt verschenken
34,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
17 °P sammeln
  • Format: ePub

This work showed two possible approaches to optimize biological sulphate reduction: a) the development of a control strategy to optimize the input of the electron donor taking into account the accumulation of microbial storage products. A validated mathematical model is presented to assist in the sulphide control strategy; and b) the feasibility of using methane as a carbon source for biological sulphate reduction and possibly other co-substrates to expedite the process.

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 3.01MB
Produktbeschreibung
This work showed two possible approaches to optimize biological sulphate reduction: a) the development of a control strategy to optimize the input of the electron donor taking into account the accumulation of microbial storage products. A validated mathematical model is presented to assist in the sulphide control strategy; and b) the feasibility of using methane as a carbon source for biological sulphate reduction and possibly other co-substrates to expedite the process.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Joana Cassidy was born in 1986 in Porto, Portugal. In 2010, she concluded her BSc and MSc in Environmental Engineering at the University of Aveiro, Portugal. After graduation, she was awarded a Leonardo da Vinci scholarship and completed a seven month internship at UNESCO-IHE, The Netherlands. Having an increasing interest in wastewater treatment, innovation and development of new technologies, she started her PhD studies in 2011 on biological sulphate reduction within the Etecos3 doctoral programme. The research was carried out at UNESCO-IHE (The Netherlands), Jiao Tong Shanghai University (China) and the University of Naples (Italy).