51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
51,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: ePub

Renewable energy sources interface with the ac grids via inverters and are termed inverter-based resources (IBRs).

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 18.06MB
Produktbeschreibung
Renewable energy sources interface with the ac grids via inverters and are termed inverter-based resources (IBRs).


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Lingling Fan is Professor at the Department of Electrical Engineering at the University of South Florida (USF). Before joining the academia, she has worked in the grid operating industry Mid-west ISO for six years (2001-2007). She received the Bachelor of Science and Master of Science degrees in Electrical Engineering from Southeast University (Nanjing, China) in 1994 and 1997, respectively. She obtained the Ph.D. degree in Electrical Engineering from West Virginia University, Morgantown in 2001. Dr. Fan is research active in control, computing, and dynamic analysis of power systems, power electronics and electric machines. Her research has been sponsored by the Department of Energy, Midwest ISO, Duke Energy, National Science Foundation, Electric Power Research Institute, Florida Cyber Security Center, Jabil, etc. She has authored/co-authored two books Modeling and Analysis of Double Fed Induction Generator Wind Energy Systems (Elsevier Press, 2015) and Control and Dynamics in Power Systems and Microgrids (CRC press, 2017). Dr. Fan has served as Consulting Editor for IEEE transactions on Sustainable Energy. Currently, she serves as the Editor-in-Chief of IEEE Electrification Magazine and Associate Editor for IEEE transactions on Energy Conversion. She Fan was elevated to IEEE Fellow class 2022 for her contributions to stability analysis and control of inverter-based resources. She is the recipient of USF's outstand- ing research achievement award in 2022 and has been featured in IEEE Power and Energy Society social media in March 2022 to celebrate World Engineering Day and National Women's History Month.

Zhixin Miao is Professor at the Department of Electrical Engineering at the University of South Florida (USF). He received the Bachelor of Science in Electrical Engineering degree from the Huazhong University of Science and Technology at Wuhan China in 1992, the Master of Science in Electrical Engineering degree from the Graduate School, Nanjing Automation Research Institute (NARI) at Nanjing China in 1997, and the Ph.D. degree in electrical engineering from West Virginia University at Morgantown in 2002. He worked as a power system protection engineer from1992-1999 in NARI and a transmission planning engineer at Midwest ISO, St. Paul, MN, from 2002 to 2009. His research interests include digital twins, power system computer and hardware simulations, microgrids, and renewable energy integration. Dr. Miao serves as an associate editor for IEEE transactions on Sustainable Energy.