121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
Als Download kaufen
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
Jetzt verschenken
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
  • Format: ePub

Microfabrication for Industrial Applications focuses on the industrial perspective for micro- and nanofabrication methods including large-scale manufacturing, transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. It gives a history of miniaturization, micro- and nanofabrication, and surveys industrial fields of application, illustrating fabrication processes of relevant micro and nano devices.
Concerning sub-micron feature manufacture, the book explains: the philosophy of micro/ nanofabrication for integrated circuit industry; thin film deposition;
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 4.36MB
Produktbeschreibung
Microfabrication for Industrial Applications focuses on the industrial perspective for micro- and nanofabrication methods including large-scale manufacturing, transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. It gives a history of miniaturization, micro- and nanofabrication, and surveys industrial fields of application, illustrating fabrication processes of relevant micro and nano devices.

Concerning sub-micron feature manufacture, the book explains: the philosophy of micro/ nanofabrication for integrated circuit industry; thin film deposition; (waveguide, plastic, semiconductor) material processing; packaging; interconnects; stress (e.g., thin film residual); economic; and environmental aspects.

Micro/nanomechanical sensors and actuators are explained in depth with information on applications, materials (incl. functional polymers), methods, testing, fabrication, integration, reliability, magnetic microstructures, etc.

  • Shows engineers & students how to evaluate the potential value of current and nearfuture manufacturing processes for miniaturized systems in industrial environments
  • Explains the top-down and bottom up approaches to nanotechnology, nanostructures fabricated with beams, nano imprinting methods, nanoparticle manufacturing (and their health aspects), nanofeature analysis, and connecting nano to micro to macro
  • Discusses issues for practical application cases; possibilities of dimension precision; large volume manufacturing of micro- & nanostructures (machines, materials, costs)
  • Explains applications of Microsystems for information technology, e.g.: data recording (camera, microphone), storage (memories, CDs), communication; computing; and displays (beamers, LCD, TFT)
  • Case studies are given for sensors, resonators, probes, transdermal medical systems, micro- pumps & valves, inkjets, DNA-analysis, lab-on-a-chip, & micro-cooling

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Luttge studied Applied Sciences in Germany (1989-1993). She had been working as an engineering researcher at Institut für Mikrotechnik in Mainz, Germany, for nearly 5 years prior to starting her PhD studies in Microsystems Technologies at Imperial College in 1999, London, UK. In 2003, Luttge was awarded a PhD from University of London on the development of fabrication technology for micro-optical scanners. Switching her research interest to microfluidics applications, Luttge had been working for 12 years at University of Twente's MESA+ Institute for Nanotechnology, The Netherlands, first as a senior scientist and since 2007 as an assistant professor prior to joining TU/e. Based on her established scientific profile in Nanoengineering for Medicine and Biology, Luttge has been appointed associate professor in the Microsystems Group at the Department of Mechanical Engineering in June 2013.