98,95 €
98,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
49 °P sammeln
98,95 €
98,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
49 °P sammeln
Als Download kaufen
98,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
49 °P sammeln
Jetzt verschenken
98,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
49 °P sammeln
  • Format: PDF

Photonic integrated circuit (PIC) technology holds great potential for breaking through the bottlenecks in current photonic and optoelectronic networks. Recently, a revolution has been witnessed in the field of lithium niobate (LN) photonics. Over the past decade, nanoscale LN waveguides with a propagation loss of ~0.01 dB and a radius of curvature on the level of ~100 µm have been demonstrated. The revolution mainly benefits from two technological advancements, the maturity of lithium-niobate-on-insulator (LNOI) technology and the innovation of nanofabrication approaches of high-quality LNOI…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 12.04MB
Produktbeschreibung
Photonic integrated circuit (PIC) technology holds great potential for breaking through the bottlenecks in current photonic and optoelectronic networks. Recently, a revolution has been witnessed in the field of lithium niobate (LN) photonics. Over the past decade, nanoscale LN waveguides with a propagation loss of ~0.01 dB and a radius of curvature on the level of ~100 µm have been demonstrated. The revolution mainly benefits from two technological advancements, the maturity of lithium-niobate-on-insulator (LNOI) technology and the innovation of nanofabrication approaches of high-quality LNOI photonic structures. Using low-loss waveguides and high-quality-factor (high-Q) microresonators produced on the LNOI platform as building blocks, various integrated photonic devices have been demonstrated with unprecedented performances. The breakthroughs have reshaped the landscape of the LN industry.

This is the first monograph on LN nanophotonics enabled by the LNOI platform. It comprehensively reviews the development of fabrication technology, investigations on nonlinear optical processes, and demonstrations of electro-optical devices, as well as applications in quantum light sources, spectroscopy, sensing, and microwave-to-optical wave conversion. The book begins with an overview of the technological evolution of PICs, justifying the motivation for developing LNOI photonics. The next four chapters focus on LNOI photonics. The book concludes with a summary of the milestone achievements discussed in these chapters and provides a future perspective of this area of research.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ya Cheng is Professor and Dean of the School of Physics and Electronic Science, East China Normal University, and Professor at the Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences. He obtained his BS from Fudan University, Shanghai, in 1993 and PhD from the SIOM in 1998. He developed slit-beam and spatiotemporal shaping techniques of femtosecond laser pulses for improving the spatial resolution in 3D micromachining, as well as photolithography-assisted chemomechanical etching for fabricating dense PICs on LN. Professor Cheng has co-authored more than 200 peer-reviewed articles and co-authored/co-edited 5 books. He has given ~150 invited talks at international conferences and served as the chair or committee member of numerous international conferences. He is also a fellow of the Institute of Physics, UK.