40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
20 °P sammeln
Jetzt verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
20 °P sammeln
  • Format: PDF

In this book the concept of indistinguishability is defined for identical particles by the symmetry of the state rather than by the symmetry of observables. It applies, therefore, to both the classical and the quantum framework. In this setting the particles of classical Maxwell-Boltzmann statistics are indistinguishable and independent. The author describes symmetric statistical operators and classifies these by means of extreme points and by means of extendibility properties. The three classical statistics are derived in abelian subalgebras. The classical theory of indistinguishability is…mehr

Produktbeschreibung
In this book the concept of indistinguishability is defined for identical particles by the symmetry of the state rather than by the symmetry of observables. It applies, therefore, to both the classical and the quantum framework. In this setting the particles of classical Maxwell-Boltzmann statistics are indistinguishable and independent. The author describes symmetric statistical operators and classifies these by means of extreme points and by means of extendibility properties. The three classical statistics are derived in abelian subalgebras. The classical theory of indistinguishability is based on the concept of interchangeable random variables which are classified by their extendibility properties. For the description of infinitely extendible interchangeable random variables de Finetti's theorem is derived and generalizations covering the Poisson limit and the central limit are presented. A characterization and interpretation of the integral representations of classical photon states in quantum optics is derived in abelian subalgebras. Unextendible indistinguishable particles are analyzed in the context of nonclassical photon states. The book addresses mathematical physicists and philosophers of science.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Addressing mathematical physicists and philosophers of science the book defines the concept of indistinguishability for identical particles by the symmetry of the state rather than the symmetry of observables. Thus it applies to both the classical and the quantum framework.