89,95 €
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
45 °P sammeln
89,95 €
89,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
45 °P sammeln
Als Download kaufen
89,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
45 °P sammeln
Jetzt verschenken
89,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
45 °P sammeln
  • Format: ePub

Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM).
It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and heat
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 79.35MB
Produktbeschreibung
Differential Transformation Method for Mechanical Engineering Problems focuses on applying DTM to a range of mechanical engineering applications. The authors modify traditional DTM to produce two additional methods, multi-step differential transformation method (Ms-DTM) and the hybrid differential transformation method and finite difference method (Hybrid DTM-FDM).

It is then demonstrated how these can be a suitable series solution for engineering and physical problems, such as the motion of a spherical particle, nanofluid flow and heat transfer, and micropolar fluid flow and heat transfer.

  • Presents the differential transformation method and why it holds an advantage over higher-order Taylor series methods
  • Includes a full mathematical introduction to DTM, Ms-DTM, and Hybrid DTM
  • Covers the use of these methods for solving a range of problems in areas such as nanofluid flow, heat transfer, and motion of a spherical particle in different conditions
  • Provides numerous examples and exercises which will help the reader fully grasp the practical applications of these new methods

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mohammad Hatami (M. Hatami) received his B.Sc. and M.Sc degrees in mechanical engineering from Ferdowsi University of Mashhad, Mashhad, Iran. He completed his PhD of energy conversion at Babol University of Technology, Babol, Iran while he was a Ph.D. visiting scholar researcher in Eindhoven University of Technology (TU/e) in the Netherlands. Also, he was a post-doctoral researcher of International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China. Dr. Hatami was chosen as the best scientist in North Khorasan province (Iran) in the field of engineering and he published more than 100 ISI and Scientific-research papers in the field of combustion engines, renewable energies, heat recoveries, nanofluids, etc. Mohammad is also editor in chief of Quarterly Journal of Mechanical Engineering and Innovation in Technology (ISSN:2476-7336). (in Persian), and editors of International Journal of Mechanical Engineering (IJME), American Journal of Modeling and Optimization, American Journal of Mechanical Engineering and International Journal of Renewable and Sustainable Energy. More details of him can be found in: https://www.researchgate.net/profile/Mohammad_Hatami4/info