139,95 €
139,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
70 °P sammeln
139,95 €
139,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
70 °P sammeln
Als Download kaufen
139,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
70 °P sammeln
Jetzt verschenken
139,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
70 °P sammeln
  • Format: ePub

Biomedical Applications of Electrospinning and Electrospraying describes the principles and laboratory set up for electrospinning and electrospraying, addressing a range of biomedical applications. Sections cover novel combinational approaches, such as electrospinning/spraying and 3D printing. Electrospinning has evolved from being a technique to prepare random networks of textile fibers to a technique to fabricate highly ordered patterns of biomedical materials of defined scale. The technological advancements in recent years with regard to the way the jet is facilitated, how the jet path is…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 101.63MB
Produktbeschreibung
Biomedical Applications of Electrospinning and Electrospraying describes the principles and laboratory set up for electrospinning and electrospraying, addressing a range of biomedical applications. Sections cover novel combinational approaches, such as electrospinning/spraying and 3D printing. Electrospinning has evolved from being a technique to prepare random networks of textile fibers to a technique to fabricate highly ordered patterns of biomedical materials of defined scale. The technological advancements in recent years with regard to the way the jet is facilitated, how the jet path is controlled, and how the fibers are collected have provided invaluable insights into controlled fabrication of a material of choice.

Additionally, the electrospray technique has also evolved from being a technique to prepare food formulations to a technique to prepare cell encapsulated beads for transplantation in clinics. Several innovations in this line, such as those leading to core-shell materials have tremendously changed the way the technique is used. Thus, a combinational approach using electrospinning, electrospraying and 3D printing has emerged.

  • Introduces electrospinning and electrospraying concepts and describes state-of-the-art methodologies
  • Provides comprehensive coverage of electrospun/spray materials in drug delivery, tissue engineering and biosensor applications
  • Presents details of instrumentation involved, along with novel devices for bench to bedside translation,
  • Covers novel combinational approaches using electrospinning, electrospraying and 3D printingIntroduces electrospinning and electrospraying concepts and describes state-of-the-art methodologies
  • Provides comprehensive coverage of electrospun/spray materials in drug delivery, tissue engineering and biosensor applications
  • Presents details of instrumentation involved, along with novel devices for bench to bedside translation
  • Covers novel combinational approaches using electrospinning, electrospraying and 3D printing

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Kasoju obtained Ph.D. from Department of Biotechnology, Indian Institute of Technology, Guwahati, India in 2012, followed by post-doctoral training from Institute of Macromolecular Chemistry, Prague, Czech Republic, Department of Zoology, as well as Institute of Biomedical Engineering, University of Oxford, Oxford, UK, before joining Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India in October 2017. His areas of research interests include fabrication of novel biomaterial structures, understanding cell - material interactions and development of tissue engineered constructs.

Prof. Ye obtained DPhil in Biochemical Engineering from University of Oxford, Oxford, UK in 2005, followed by post-doctoral training from Department of Chemical Engineering, Imperial College London, UK, before joining University of Oxford, Oxford, UK in 2007. Within the broad research area of tissue engineering and stem cell technologies, Prof. Ye's specific research interests lie in three interconnected areas, i.e. in vitro cancer model, biomaterials and bioreactor for tissue engineering and stem cell expansion. Prof. Ye is a Fellow of Linacre College, University of Oxford, Oxford, UK.