203,99 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 5. Juli 2024
payback
102 °P sammeln
  • Broschiertes Buch

Vehicular Platoon System Design: Fundamentals and Robustness provides a comprehensive introduction to connected and automated vehicular platoon system design. Platoons decrease the distances between cars or trucks using electronic, and possibly mechanical, coupling. This capability allows many cars or trucks to accelerate or brake simultaneously. It also allows for a closer headway between vehicles by eliminating reacting distance needed for human reaction. The book considers the key issues of robustness and cybersecurity, with optimization-based model predictive control schemes applied to…mehr

Produktbeschreibung
Vehicular Platoon System Design: Fundamentals and Robustness provides a comprehensive introduction to connected and automated vehicular platoon system design. Platoons decrease the distances between cars or trucks using electronic, and possibly mechanical, coupling. This capability allows many cars or trucks to accelerate or brake simultaneously. It also allows for a closer headway between vehicles by eliminating reacting distance needed for human reaction. The book considers the key issues of robustness and cybersecurity, with optimization-based model predictive control schemes applied to control vehicle platoon. In the controller design part, several practical problems, such as constraint handling, optimal control performance, robustness against disturbance, and resilience against cyberattacks are reviewed. In addition, the book provides detailed theoretical analysis of the stability of the platoon under different control schemes.
Autorenporträt
Professor Zhang received his PhD degree in Mechanical Engineering from the University of Victoria, Canada and undertook three years of postdoctoral work at The Ohio State University, USA. He has published more than 70 peer-reviewed journal papers. Moreover, he has successfully organized 5 special issues for Mechanical Systems and Signal Processing, Journal of The Franklin Institute, International Journal of Vehicle Design, IEEE Access, and Mechatronics.