53,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
27 °P sammeln
  • Gebundenes Buch

This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier¿Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis.

Produktbeschreibung
This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier¿Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis.
Autorenporträt
John Newman is Charles W. Tobias Chair of Electrochemistry (emeritus), Department of Chemical Engineering, UC Berkeley. At the same time, he was also a senior scientist and principal investigator at the Energy Technologies Area (ETA), Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA. He received his BS degree from Northwestern University, Illinois, USA, and MS degree and PhD from UC Berkeley. He has been a recipient of the Onsager Professorship, 2002, of the Norwegian University of Science and Technology, Trondheim, Norway. His current research focuses on the analysis and design of electrochemical systems, with batteries, fuel cells, turbulence, and renewable energy receiving the most attention. He is the author of over 300 technical publications, numerous plenary and invited lectures, and the book Electrochemical Systems. Vincent Battaglia is a research scientist at LBNL, where he heads the Energy Storage Group of the ETA. He received his BS degree in chemical engineering from Johns Hopkins University, Baltimore, USA, and his MS degree and PhD in chemical engineering from UC Berkeley with an emphasis in electrochemical engineering. He joined Argonne National Laboratory, Washington, DC, as a postdoctoral fellow and was later appointed as a chemical engineer, then technical coordinator for DOC PNGV office and coordinator of DOE VTO Battery Research there. He specializes in battery design, fabrication, and testing, and his current research focuses on the science of electrode formulation as it relates to manufacturing and performance. He has received the Pacesetter Award from Argonne National Laboratory, the DOE R&D Award, the 2013 R&D 100 Award, and the FMC Corporation external research collaboration award.