117,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
59 °P sammeln
  • Gebundenes Buch

The study of atomic systems exposed to super-intense laser fields de fines an important area in atomic, molecular and optical physics. Although the concept of super-intense field has no absolute meaning, it is now usual to call an electromagnetic field super-intense when it exceeds the atomic binding field. In the case of the simplest atomic system, hydrogen in its 16 2 ground state, this occurs above an intensity of 3. 5 x 10 Wattfcm which is the atomic unit of intensity. Presently at the laboratory scale and in ex tremely short and tightly focussed laser pulses, the electric field strength…mehr

Produktbeschreibung
The study of atomic systems exposed to super-intense laser fields de fines an important area in atomic, molecular and optical physics. Although the concept of super-intense field has no absolute meaning, it is now usual to call an electromagnetic field super-intense when it exceeds the atomic binding field. In the case of the simplest atomic system, hydrogen in its 16 2 ground state, this occurs above an intensity of 3. 5 x 10 Wattfcm which is the atomic unit of intensity. Presently at the laboratory scale and in ex tremely short and tightly focussed laser pulses, the electric field strength 16 18 2 reaches peak values which are of the order of 10 - 10 Wattfcm in the infrared frequency regime, the prospect being that such peak intensities may be reached within a few years in a regime of much higher frequencies (XUV or even X). The interaction of such electromagnetic fields with an atomic system has a highly non-linear character which has led to the observation of to tally unexpected phenomena. There are three fundamental processes which have marked the beginning of an intensive research in the field of super intense laser-atom physics (SILAP). These processes which only involve one atomic electron are (i) the so-called above-threshold ionisation i. e.