78,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
39 °P sammeln
  • Broschiertes Buch

This book presents an overview of the computational framework in which calculations of relativistic hydrodynamics have been developed. It summarizes the jargon and methods used in the field, and provides illustrative applications to real physical systems. The authors explain how to break down the complexities of Einstein's equations and fluid dynamics, stressing the viability of the Euler-Lagrange approach to astrophysical problems. The book contains techniques and algorithms enabling one to build computer simulations of relativistic fluid problems for various astrophysical systems in one, two…mehr

Produktbeschreibung
This book presents an overview of the computational framework in which calculations of relativistic hydrodynamics have been developed. It summarizes the jargon and methods used in the field, and provides illustrative applications to real physical systems. The authors explain how to break down the complexities of Einstein's equations and fluid dynamics, stressing the viability of the Euler-Lagrange approach to astrophysical problems. The book contains techniques and algorithms enabling one to build computer simulations of relativistic fluid problems for various astrophysical systems in one, two and three dimensions. It also shows the reader how to test relativistic hydrodynamics codes. Suitable for graduate courses on astrophysical hydrodynamics and relativistic astrophysics, this book also provides a valuable reference for researchers already working in the field.
Autorenporträt
James Wilson is widely recognised as a pioneer in the field of numerical relativity and hydrodynamics. Most of the techniques currently in active use in the field today were developed by him at one stage or another.