25,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
13 °P sammeln
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. RIBO stands for the Radioactive Ion Beam Optimization, a concept closely linked to the extraction of rare isotopes from targets. Indeed, rare and radioactive here are synonyms. These are nuclei with an excess or deficit of neutrons or protons with respect to the normal isotopes observed in nature. In nuclear physics the ratio N/Z (number of Neutrons to number of Protons) is close to one for light elements and then it grows to about 1.5 because protons are less…mehr

Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. RIBO stands for the Radioactive Ion Beam Optimization, a concept closely linked to the extraction of rare isotopes from targets. Indeed, rare and radioactive here are synonyms. These are nuclei with an excess or deficit of neutrons or protons with respect to the normal isotopes observed in nature. In nuclear physics the ratio N/Z (number of Neutrons to number of Protons) is close to one for light elements and then it grows to about 1.5 because protons are less favourable in terms of stability due to the Coulomb repulsion. Rare isotopes can be produced artificially in research facilities like ISOLDE (at CERN, the European Center for Nuclear Research, in Geneva) or Triumph (Canada) by irradiating determined targets with energetic beams (typically protons or deuterons). The isotopes thereafter created tend to have short lifetimes (that is why you don''t normally ''see'' them in nature) so that any experiment or measurement done with them has to be carried out very quickly. The facilities ought to be optimised for a major production of the wished isotope while keeping the quickest extraction from the target to the experimental area.