28,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Hohe Laserleistungen im Dauerstrichbetrieb bei gleichzeitig guter Strahlqualität, kleinen Linienbreiten und geringem Leistungs- und Frequenzrauschen sind die Anforderungen an Lasersysteme, die in Gravitationswellendetektoren eingesetzt werden sollen, die nach dem Prinzip eines Michelson-Interferometers arbeiten. In der vorliegenden Arbeit werden Untersuchungen vorgestellt, mit denen das Laserkonzept für den Gravitationswellendetektor LIGO (Laser Interferometer Gravitational-Wave Observatory) weiter entwickelt wurde. In seiner aktuellen Ausbaustufe soll das LIGO Lasersystem um einen…mehr

Produktbeschreibung
Hohe Laserleistungen im Dauerstrichbetrieb bei gleichzeitig guter Strahlqualität, kleinen Linienbreiten und geringem Leistungs- und Frequenzrauschen sind die Anforderungen an Lasersysteme, die in Gravitationswellendetektoren eingesetzt werden sollen, die nach dem Prinzip eines Michelson-Interferometers arbeiten. In der vorliegenden Arbeit werden Untersuchungen vorgestellt, mit denen das Laserkonzept für den Gravitationswellendetektor LIGO (Laser Interferometer Gravitational-Wave Observatory) weiter entwickelt wurde. In seiner aktuellen Ausbaustufe soll das LIGO Lasersystem um einen injektionsgekoppelten Nd:YAG Hochleistungsoszillator ergänzt werden, mit dessen Hilfe die Laserleistung von 35 W auf 165 W skaliert werden soll. Die Komplexität dieses Oszillators erlaubt nur bedingt eine genaue Untersuchung seiner Limitierungen in Ausgangsleistung und Strahlprofil. Daher wurde das System für die in dieser Arbeit vorgestellten Experimente stark vereinfacht, lässt aber trotzdem Rückschlüsse auf das LIGO-Lasersystem zu. Es wird ein asymmetrischer Stehwellenresonator verwendet, der aus zwei sich gegenüber stehenden, longitudinal gepumpten Nd:YAG Kristallen besteht. Zwischen den Kristallen befindet sich eine Doppelbrechungskompensation, die aus einer 4f-Abbildung und ein 90° Quarzrotator besteht.