157,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
79 °P sammeln
  • Gebundenes Buch

Describes the general principles and current research into Model Predictive Control (MPC); the most up-to-date control method for power converters and drives
The book starts with an introduction to the subject before the first chapter on classical control methods for power converters and drives. This covers classical converter control methods and classical electrical drives control methods. The next chapter on Model predictive control first looks at predictive control methods for power converters and drives and presents the basic principles of MPC. It then looks at MPC for power electronics…mehr

Produktbeschreibung
Describes the general principles and current research into Model Predictive Control (MPC); the most up-to-date control method for power converters and drives

The book starts with an introduction to the subject before the first chapter on classical control methods for power converters and drives. This covers classical converter control methods and classical electrical drives control methods. The next chapter on Model predictive control first looks at predictive control methods for power converters and drives and presents the basic principles of MPC. It then looks at MPC for power electronics and drives. The third chapter is on predictive control applied to power converters. It discusses: control of a three-phase inverter; control of a neutral point clamped inverter; control of an active front end rectifier, and; control of a matrix converter. In the middle of the book there is Chapter four - Predictive control applied to motor drives. This section analyses predictive torque control of industrial machines and predictive control of permanent magnet synchronous motors. Design and implementation issues of model predictive control is the subject of the final chapter. The following topics are described in detail: cost function selection; weighting factors design; delay compensation; effect of model errors, and prediction of future references. While there are hundreds of books teaching control of electrical energy using pulse width modulation, this will be the very first book published in this new topic.
Unique in presenting a completely new theoretic solution to control electric power in a simple way
Discusses the application of predictive control in motor drives, with several examples and case studies
Matlab is included on a complementary website so the reader can run their own simulations
Autorenporträt
Professor José Rodríguez, Universidad Técnica Federico Santa María, Chile Professor Rodriguez has been at the Department of Electronics Engineering, University Tecnica Federico Santa Maria, since 1977. From 2001 to 2004 he was Director of the Department of Electronics Engineering of the same university. In 1996 he was responsible for the Mining Division of Siemens Corporation, Santiago, Chile. He has extensive consulting experience in the mining industry, particularly in the application of large drives.Professor Rodriguez' research group was recoginized as one of the two Centers of Excellence in Engineering in Chile from 2005 to 2008. He has directed more than 40 R&D projects in the field of industrial electronics, and his main research interests include multilevel inverters, new converter topologies, control of power converters and adjustable-speed drives. He has co-authored more than 250 journal and conference papers and contributed one book chapter. Since 2002 he has been active associate editor of the IEEE Transactions on Power Electronics and IEEE Transactions on Industrial Electronics. He received the Best Paper Award from the former in 2007. Patricio Cortés, Universidad Técnica Federico Santa María, Chile Dr Cortes joined the Electronics Engineering Department UTFSM in 2003, where he is currently Research Associate. His main research interests include power electronics, adjustable speed drives and predictive control. He has authored over 30 journal and conference papers, most of them in the area of predictive control in power electronics. Dr Cortes received the Best Paper Award from the IEEE Transactions on Industrial Electronics in 2007.