
Mittag-Leffler Euler Difference Techniques
Versandkostenfrei!
Erscheint vorauss. 24. September 2025
158,99 €
inkl. MwSt.
PAYBACK Punkte
79 °P sammeln!
This book presents a comprehensive investigation into the exponential and Mittag-Leffler Euler differences for semi-linear fractional-order differential equations, a subject falling within the purview of computational mathematics. The field of exponential and Mittag-Leffler Euler differences has witnessed a period of rapid development in recent times. This has led to the emergence of new techniques such as exponential Euler integrator, exponential Runge-Kutta methods, multistep exponential integrator, exponential Rosenbrock-type methods, and more. This book puts forth several difference approa...
This book presents a comprehensive investigation into the exponential and Mittag-Leffler Euler differences for semi-linear fractional-order differential equations, a subject falling within the purview of computational mathematics. The field of exponential and Mittag-Leffler Euler differences has witnessed a period of rapid development in recent times. This has led to the emergence of new techniques such as exponential Euler integrator, exponential Runge-Kutta methods, multistep exponential integrator, exponential Rosenbrock-type methods, and more. This book puts forth several difference approaches to fractional-order differential equations and offers insights into their practical applications in the study of neural networks. Adopting a holistic approach, the book presents a foundational framework for this topic, underscoring the significance of exponential and Mittag-Leffler Euler differences in the numerical theory of fractional-order differential equations.
The book is designed for graduate students with an interest in numerical solutions of fractional-order differential equations, as well as for researchers engaged in the qualitative theory of difference equations.
The book is designed for graduate students with an interest in numerical solutions of fractional-order differential equations, as well as for researchers engaged in the qualitative theory of difference equations.