158,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
79 °P sammeln
  • Gebundenes Buch

This book focuses on the preparation of iron nanomaterials that can carry out removal processes and the use of these nanoparticles for cleaning waters and soils. It carefully explains the different aspects of the synthesis and characterization of iron nanoparticles and methods to evaluate their ability to remove contaminants, along with practical deployment. It overviews the advantages and disadvantages of using iron-based nanomaterials and presents a vision for the future of this nanotechnology.

Andere Kunden interessierten sich auch für
Produktbeschreibung
This book focuses on the preparation of iron nanomaterials that can carry out removal processes and the use of these nanoparticles for cleaning waters and soils. It carefully explains the different aspects of the synthesis and characterization of iron nanoparticles and methods to evaluate their ability to remove contaminants, along with practical deployment. It overviews the advantages and disadvantages of using iron-based nanomaterials and presents a vision for the future of this nanotechnology.
Autorenporträt
Marta I. Litter is a researcher at the National Atomic Energy Commission (CNEA), a superior researcher at the National Scientific and Technical Research Council (CONICET), and a full professor of the National University of General San Martín, Argentina. She is a PhD in chemistry from the University of Buenos Aires, Argentina, and a postdoctorate from the University of Arizona, USA. She has authored more than 200 scientific publications in international journals, books, and chapters of books. She is recipient of the MERCOSUR Science and Technology Award in 2006 and 2011. She was president of the local organizing committee of the 5th International Congress on Arsenic in the Environment (As2014), Buenos Aires, Argentina. She was recently designated as pioneer on photocatalysis in Argentina (2016). Her research focuses on treatment of organic and inorganic contaminants in water and air by innovative advanced technologies, especially heterogeneous photocatalysis, and use of nanomaterials. Natalia Quici is a researcher at CNEA, an adjunct researcher at CONICET, and head of the Chair of Physical Chemistry at Buenos Aires School of the National Technological University (UTN.BA), Argentina. She received her degree as a chemical engineer from UTN.BA and her doctoral degree from the Engineering Faculty of the University of Buenos Aires. She was a postdoctoral fellow at the University of Nottingham, UK, during 2009-2010 and at Loughborough University, UK, during 2010-2012. Her current research focuses on the use of nanomaterials for environmental remediation and chemistry. Martín Meichtry is a researcher at the Environmental Remediation Chemistry Division, Chemistry Management, CNEA; a joint researcher at CONICET; and assistant professor at the Chemistry Department, UTN.BA. His current research focuses on the development and application of advanced processes, such as heterogeneous photocatalysis, and nanoparticulated iron-based technologies and ultrasound for the treatment of air, water, and soil pollutants and conversion of energy. He has authored 22 articles in international peer-reviewed journals, 8 book chapters, 4 books, and several technical reports.