29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

Indium nitride (InN) is a small bandgap semiconductor material which has potential application in solar cells and high speed electronics. The bandgap of InN has now been established as ~0.7 eV depending on temperature (the obsolete value is 1.97 eV). The effective electron mass is between 0.04 and 0.07 m0. Alloyed with GaN, the ternary system InGaN has a direct bandgap span from the infrared (0.65 eV) to the ultraviolet (3.4 eV). Currently there is research into developing solar cells using the nitride based semiconductors. Using the alloy indium gallium nitride (InGaN), an optical match to…mehr

Produktbeschreibung
Indium nitride (InN) is a small bandgap semiconductor material which has potential application in solar cells and high speed electronics. The bandgap of InN has now been established as ~0.7 eV depending on temperature (the obsolete value is 1.97 eV). The effective electron mass is between 0.04 and 0.07 m0. Alloyed with GaN, the ternary system InGaN has a direct bandgap span from the infrared (0.65 eV) to the ultraviolet (3.4 eV). Currently there is research into developing solar cells using the nitride based semiconductors. Using the alloy indium gallium nitride (InGaN), an optical match to the solar spectrum is obtained. The bandgap of InN allows a wavelengths as long as 1900 nm to be utilized. However, there are many difficulties to be overcome if such solar cells are to become a commercial reality. p-type doping of InN and indium-rich InGaN is one of the biggest challenges. Heteroepitaxial growth of InN with other nitrides (GaN, AlN) has proved to be difficult. Thin polycrystalline films of indium nitride can be highly conductive and even superconductive at helium temperatures.