81,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
41 °P sammeln
  • Broschiertes Buch

Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in…mehr

Produktbeschreibung
Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications covers a wide range of biomechanical topics and fields, ranging from theoretical issues, mechanobiology, design of implants, joint biomechanics, regulatory issues and practical applications. The book teaches the fundamentals of physiological loading and constraint conditions at various parts of the musculoskeletal system. It is an ideal resource for teaching and education in courses on orthopedic biomechanics, and for engineering students engaged in these courses. In addition, all bioengineers who have an interest in orthopedic biomechanics will find this title useful as a reference, particularly early career researchers and industry professionals.

Finally, any orthopedic surgeons looking to deepen their knowledge of biomechanical aspects will benefit from the accessible writing style in this title.
Autorenporträt
Prof. Bernardo Innocenti has been working in the field of knee orthopaedic biomechanics from more than 17 years. During his entire career he has been involved in several research projects that, applying experimental and computational methodologies, alone or together, investigate the kinematics and the kinetics of the human knee joint, in healthy or pathologic conditions and, also, with a prosthesis. He is author of co-author of more than 100 peer-reviewed publications about knee biomechanics. The analysis of the musculoskeletal loading in healthy and pathological subjects, the stress distribution in bone and in implant, and the study of prosthesis design, together with the simulation of bone remodeling and implant wear, are also additional fields in which he has been involved.