143,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
72 °P sammeln
  • Broschiertes Buch

Heat Exchange of Tubular Surfaces in a Bubbling Boiling Bed bridges the gap surrounding the study of a boiling bed of large particles with smooth and ribbed pipes, as well as pipe bundles. The book's authors combine results from experimental studies with their varied practical experience in fields of boiling bed applications across various disciplines such as chemical, pharmacological, metallurgical and power engineering industries. This book provides readers with a deep practical understanding of how to calculate the heat engineering parameters of ribbed pipe bundles in a boiling bed, along…mehr

Produktbeschreibung
Heat Exchange of Tubular Surfaces in a Bubbling Boiling Bed bridges the gap surrounding the study of a boiling bed of large particles with smooth and ribbed pipes, as well as pipe bundles. The book's authors combine results from experimental studies with their varied practical experience in fields of boiling bed applications across various disciplines such as chemical, pharmacological, metallurgical and power engineering industries. This book provides readers with a deep practical understanding of how to calculate the heat engineering parameters of ribbed pipe bundles in a boiling bed, along with the hydrodynamics of the boiling bed. Researchers and experts involved in the design, development and operation of boiling bed apparatus will follow step-by-step methods and procedures to gain knowledge of the hydrodynamic and heat exchange elements of the boiling bed which can be applied to their own settings. The effect of gas velocity, size and properties of the dispersed material, the geometric characteristics of the pipe bundle is also presented, alongside data on the effect of high temperature and high pressure of gas in a dispersed system on heat exchange intensity.
Autorenporträt
Redko Oleksandr is Doctor of technical sciences and Professor, department of Heat, gas supply, ventilation and using WHR at the Kharkiv National University of Construction and Architecture. He defended his Dr. S thesis on the problem of intensification of heat processes in a boiling bed and is currently researching processes of low-grade fuel combustion in a boiling bed.