117,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
59 °P sammeln
  • Gebundenes Buch

BASIC Microcomputing and Biostatistics is designed as the first practical "how to" guide to both computer programming in BASIC and the statis tical data processing techniques needed to analyze experimental, clinical, and other numerical data. It provides a small vocabulary of essential com puter statements and shows how they are used to solve problems in the bio logical, physical, and medical sciences. No mathematical background be yond algebra and an inkling of the principles of calculus is assumed. All more advanced mathematical techniques are developed from "scratch" before they are used.…mehr

Produktbeschreibung
BASIC Microcomputing and Biostatistics is designed as the first practical "how to" guide to both computer programming in BASIC and the statis tical data processing techniques needed to analyze experimental, clinical, and other numerical data. It provides a small vocabulary of essential com puter statements and shows how they are used to solve problems in the bio logical, physical, and medical sciences. No mathematical background be yond algebra and an inkling of the principles of calculus is assumed. All more advanced mathematical techniques are developed from "scratch" before they are used. The computing language is BASIC, a high-level lan guage that is easy to learn and widely available using time-sharing com puter systems and personal microcomputers. The strategy of the book is to present computer programming at the outset and to use it throughout. BASIC is developed in a way reminiscent of graded readers used in human languages; the first programs are so sim ple that they canbe read almost without an introduction to the language. Each program thereafter contains new vocabulary and one or more con cepts, explained in the text, not used in the previous ones. By gradual stages, the reader can progress from programs that do nothing more than count from one to ten to sophisticated programs for nonlinear curve fitting, matrix algebra, and multiple regression. There are 33 working programs and, except for the introductory ones, each performs a useful function in everyday data processing problems encountered by the experimentalist in many diverse fields.
Autorenporträt
Donald W. Rolgers, PhD, is Professor Emeritus at Long Island University. For forty years, Professor Rogers has taught academic courses in physical chemistry, thermodynamics, general chemistry, computational chemistry, and microcomputer interfacing. He publishes regularly in the Journal of Physical Chemistry and elsewhere, and his work has been supported for the last decade by the National Science Foundation through the National Center for Supercomputing Applications.