206,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
103 °P sammeln
  • Gebundenes Buch

Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change.
An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's…mehr

Produktbeschreibung
Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change.

An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program.

This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub forinformation on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.
Autorenporträt
Chitra A. received her PhD from Pondicherry University and is now an associate professor in the School of Electrical Engineering, at Vellore Institute of Technology, Vellore, India. She has published many papers in SCI journals and her research areas include PV-based systems, neural networks, induction motor drives, reliability analysis of multilevel inverters, and electrical vehicles. Sanjeevikumar Padmanaban obtained his PhD from the University of Bologna, Italy, in 2012, and since 2018, he has been a faculty member in the Department of Energy Technology, Aalborg University, Esbjerg, Denmark. He has authored more than 300 scientific papers. Jens Bo Holm-Nielsen currently works at the Department of Energy Technology, Aalborg University and is Head of the Esbjerg Energy Section. He has executed many large-scale European Union and United Nations projects in research aspects of bioenergy, biorefinery processes, the full chain of biogas and green engineering. He has authored more than 100 scientific papers. S. Himavathi received her PhD degree in the area of fuzzy modelling from Anna University, Chennai, India in 2003. Currently, she is a professor in the Department of Electrical and Electronics Engineering, Pondicherry Engineering College, Pondicherry, India.