- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is a thorough introduction to general relativity for advanced students, including complete derivations of important results.
Andere Kunden interessierten sich auch für
- Holger GöbelGravitation und Relativität34,95 €
- Ulrich E. SchröderGravitation24,90 €
- Albert EinsteinGrundzüge der Relativitätstheorie79,99 €
- Rainer OloffGeometrie der Raumzeit44,99 €
- Jayant V. NarlikarAn Introduction to Relativity66,99 €
- Ernst SchmutzerRelativitätstheorie aktuell29,99 €
- Iosif B. KhriplovichGeneral Relativity58,99 €
-
-
-
This book is a thorough introduction to general relativity for advanced students, including complete derivations of important results.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 558
- Erscheinungstermin: 25. Mai 2012
- Englisch
- Abmessung: 244mm x 170mm x 30mm
- Gewicht: 951g
- ISBN-13: 9781107407367
- ISBN-10: 1107407362
- Artikelnr.: 36198278
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 558
- Erscheinungstermin: 25. Mai 2012
- Englisch
- Abmessung: 244mm x 170mm x 30mm
- Gewicht: 951g
- ISBN-13: 9781107407367
- ISBN-10: 1107407362
- Artikelnr.: 36198278
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. How the theory of relativity came into being (a brief historical sketch)
Part I. Elements of Differential Geometry: 2. A short sketch of two-dimensional differential geometries
3. Tensors, tensor densities
4. Covariant derivatives
5. Parallel transport and geodesic lines
6. Curvature of a manifold: flat manifolds
7. Riemannian geometry
8. Symmetries of Rieman spaces, invariance of tensors
9. Methods to calculate the curvature quickly - Cartan forms and algebraic computer programs
10. The spatially homogeneous Bianchi-type spacetimes
11. The Petrov classification by the spinor method
Part II. The Gravitation Theory: 12. The Einstein equations and the sources of a gravitational field
13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory
14. Spherically symmetric gravitational field of isolated objects
15. Relativistic hydrodynamics and thermodynamics
16. Relativistic cosmology I: general geometry
17. Relativistic cosmology II: the Robertson-Walker geometry
18. Relativistic cosmology III: the Lemaître-Tolman geometry
19. Relativistic cosmology IV: generalisations of L-T and related geometries
20. The Kerr solution
21. Subjects omitted in this book
References.
Part I. Elements of Differential Geometry: 2. A short sketch of two-dimensional differential geometries
3. Tensors, tensor densities
4. Covariant derivatives
5. Parallel transport and geodesic lines
6. Curvature of a manifold: flat manifolds
7. Riemannian geometry
8. Symmetries of Rieman spaces, invariance of tensors
9. Methods to calculate the curvature quickly - Cartan forms and algebraic computer programs
10. The spatially homogeneous Bianchi-type spacetimes
11. The Petrov classification by the spinor method
Part II. The Gravitation Theory: 12. The Einstein equations and the sources of a gravitational field
13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory
14. Spherically symmetric gravitational field of isolated objects
15. Relativistic hydrodynamics and thermodynamics
16. Relativistic cosmology I: general geometry
17. Relativistic cosmology II: the Robertson-Walker geometry
18. Relativistic cosmology III: the Lemaître-Tolman geometry
19. Relativistic cosmology IV: generalisations of L-T and related geometries
20. The Kerr solution
21. Subjects omitted in this book
References.
1. How the theory of relativity came into being (a brief historical sketch)
Part I. Elements of Differential Geometry: 2. A short sketch of two-dimensional differential geometries
3. Tensors, tensor densities
4. Covariant derivatives
5. Parallel transport and geodesic lines
6. Curvature of a manifold: flat manifolds
7. Riemannian geometry
8. Symmetries of Rieman spaces, invariance of tensors
9. Methods to calculate the curvature quickly - Cartan forms and algebraic computer programs
10. The spatially homogeneous Bianchi-type spacetimes
11. The Petrov classification by the spinor method
Part II. The Gravitation Theory: 12. The Einstein equations and the sources of a gravitational field
13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory
14. Spherically symmetric gravitational field of isolated objects
15. Relativistic hydrodynamics and thermodynamics
16. Relativistic cosmology I: general geometry
17. Relativistic cosmology II: the Robertson-Walker geometry
18. Relativistic cosmology III: the Lemaître-Tolman geometry
19. Relativistic cosmology IV: generalisations of L-T and related geometries
20. The Kerr solution
21. Subjects omitted in this book
References.
Part I. Elements of Differential Geometry: 2. A short sketch of two-dimensional differential geometries
3. Tensors, tensor densities
4. Covariant derivatives
5. Parallel transport and geodesic lines
6. Curvature of a manifold: flat manifolds
7. Riemannian geometry
8. Symmetries of Rieman spaces, invariance of tensors
9. Methods to calculate the curvature quickly - Cartan forms and algebraic computer programs
10. The spatially homogeneous Bianchi-type spacetimes
11. The Petrov classification by the spinor method
Part II. The Gravitation Theory: 12. The Einstein equations and the sources of a gravitational field
13. The Maxwell and Einstein-Maxwell equations and the Kaluza-Klein theory
14. Spherically symmetric gravitational field of isolated objects
15. Relativistic hydrodynamics and thermodynamics
16. Relativistic cosmology I: general geometry
17. Relativistic cosmology II: the Robertson-Walker geometry
18. Relativistic cosmology III: the Lemaître-Tolman geometry
19. Relativistic cosmology IV: generalisations of L-T and related geometries
20. The Kerr solution
21. Subjects omitted in this book
References.