59,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
30 °P sammeln
  • Broschiertes Buch

An accurate and efficient hybrid Density Functional Theory (DFT) and Multireference Configuration Interaction (MRCI) model for computing electronic excitation energies in atoms and molecules was developed. The utility of a hybrid method becomes apparent when ground and excited states of large molecules, clusters of molecules, or even moderately sized molecules containing heavy element atoms are desired. In the case of large systems of lighter elements, the hybrid method brings to bear the numerical efficiency of the DFT method in computing the electron-electron dynamic correlation, while…mehr

Produktbeschreibung
An accurate and efficient hybrid Density Functional Theory (DFT) and Multireference Configuration Interaction (MRCI) model for computing electronic excitation energies in atoms and molecules was developed. The utility of a hybrid method becomes apparent when ground and excited states of large molecules, clusters of molecules, or even moderately sized molecules containing heavy element atoms are desired. In the case of large systems of lighter elements, the hybrid method brings to bear the numerical efficiency of the DFT method in computing the electron-electron dynamic correlation, while including non-dynamical electronic correlation via the Configuration Interaction (CI) calculation. Substantial reductions in the size of the CI expansion necessary to obtain accurate spectroscopic results are possible in the hybrid method.