-8%
144,95 €
Statt 157,99 €**
144,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*
72 °P sammeln
-8%
144,95 €
Statt 157,99 €**
144,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Versandkostenfrei*

Alle Infos zum eBook verschenken
72 °P sammeln
Als Download kaufen
Statt 157,99 €**
-8%
144,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
72 °P sammeln
Jetzt verschenken
Statt 157,99 €**
-8%
144,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
72 °P sammeln
  • Format: PDF


The goal of Leakage in Nanometer CMOS Technologies is to provide ample detail so that the reader can understand why leakage power components are becoming increasingly relevant in CMOS systems that use nanometer scale MOS devices. Leakage current sources at the MOS device level including sub-threshold and different types of tunneling are discussed in detail. The book covers promising solutions at the device, circuit, and architecture levels of abstraction. Manifestation of these MOS device leakage components at the full chip level depends considerably on several aspects including the nature of…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 27.17MB
Produktbeschreibung
The goal of Leakage in Nanometer CMOS Technologies is to provide ample detail so that the reader can understand why leakage power components are becoming increasingly relevant in CMOS systems that use nanometer scale MOS devices. Leakage current sources at the MOS device level including sub-threshold and different types of tunneling are discussed in detail. The book covers promising solutions at the device, circuit, and architecture levels of abstraction. Manifestation of these MOS device leakage components at the full chip level depends considerably on several aspects including the nature of the circuit block, its state, its application workload, and Process/Voltage/Temperature conditions. The sensitivity of the various MOS leakage sources to these conditions are described from the first principles. The resulting manifestations are discussed at length to help the reader understand the effectiveness of leakage power reduction solutions under these different conditions. Case studies are presented to highlight real world examples that reap the benefits of leakage power reduction solutions. Finally, the book highlights different device design choices that exist to mitigate increases in the leakage components as technology scales. TOC:Preface.- Taxonomy of Leakage: Sources, Impact, and Solutions.- Leakage Dependence on Input Vector.- Power Gating and Dynamic Voltage Scaling.- Methodologies for Power Gating.- Body Biasing.- Process Variation and Adaptive Design.- Memory Leakage Reduction.- Active Leakage Reduction and Multi-Performance Devices.- Impact of Leakage Power and Variation on Testing.- Case Study: Leakage Reduction in Hitachi/Renesas Microprocessors.- Case Study: Leakage Reduction in the Intel Xscale Microprocessor.- Transistor Design to Reduce Leakage.- Index.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 10. März 2006
  • Englisch
  • ISBN-13: 9780387281339
  • Artikelnr.: 37288066
Autorenporträt
Anantha Chandrakasan is an associate professor of electrical engineering and computer science at the Massachusetts Institute of Technology. His research interests include the energy efficient implementation of DSPs, wireless microsensor networks, and CAD tools for VLSI.
Inhaltsangabe
Taxonomy of Leakage: Sources, Impact, and Solutions.- Leakage Dependence on Input Vector.- Power Gating and Dynamic Voltage Scaling.- Methodologies for Power Gating.- Body Biasing.- Process Variation and Adaptive Design.- Memory Leakage Reduction.- Active Leakage Reduction and Multi-Performance Devices.- Impact of Leakage Power and Variation on Testing.- Case Study: Leakage Reduction in Hitachi/Renesas Microprocessors.- Case Study: Leakage Reduction in the Intel Xscale Microprocessor.- Transistor Design to Reduce Leakage.