Bisher 142,99 €**
122,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Sofort lieferbar
61 °P sammeln
    Gebundenes Buch

Nanoscale miniaturization and femtosecond laser-pulse spectroscopy require a quantum mechanical description of the carrier kinetics that goes beyond the conventional Boltzmann theory. On these extremely short length and time scales, the electrons behave as do partially coherent waves. This monograph deals with quantum kinetics for transport in low-dimensional microstructures and for ultra-short laser pulse spectroscopy. The nonequilibrium Green function theory is described and used for the derivation of the quantum kinetic equations. Numerical methods for the solution of the retarded quantum…mehr

Produktbeschreibung
Nanoscale miniaturization and femtosecond laser-pulse spectroscopy require a quantum mechanical description of the carrier kinetics that goes beyond the conventional Boltzmann theory. On these extremely short length and time scales, the electrons behave as do partially coherent waves. This monograph deals with quantum kinetics for transport in low-dimensional microstructures and for ultra-short laser pulse spectroscopy. The nonequilibrium Green function theory is described and used for the derivation of the quantum kinetic equations. Numerical methods for the solution of the retarded quantum kinetic equations are discussed and results are presented for high-field transport and for mesoscopic transport phenomena. Quantum beats, polarization decay, and non-Markovian behaviour are treated for femtosecond spectroscopy on a microscopic basis.
Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas, such as molecular electronics, noise calculations, build-up of screening and polaron correlations, and non-Markovian relaxation, among others. Connection to recent experiments is made, and it is emphasized how the quantum kinetic theory is essential in their interpretation.
  • Produktdetails
  • Springer Series in Solid-State Sciences 123
  • Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
  • Artikelnr. des Verlages: 12081660
  • 2nd rev. ed.
  • Erscheinungstermin: 9. Oktober 2007
  • Englisch
  • Abmessung: 244mm x 164mm x 29mm
  • Gewicht: 732g
  • ISBN-13: 9783540735618
  • ISBN-10: 3540735615
  • Artikelnr.: 22964896
Autorenporträt
Hartmut Haug obtained his Ph. D. (Dr. rer. nat. 1966) in Physics at the University of Stuttgart. From 1967 to 1969 he was a faculty member at the Department of Electrical Engeneering, University of Wisconsin in Madiason. After working as a scientific staff member at the Philips Research Laboratories in Eindhoven from 1969 to 1973, he joined the Institute of Theoretical Physics of the J.W.Goethe-University Frankfurt, where he was a full professor from 1975 to 2001 and currently is an emeritus. He has been a visiting scientist at many international research centers and universities.

Antti-Pekka Jauho obtained his Ph.D in Theoretical Condensed Matter Physics at Cornell University, USA, in 1982. He has been a faculty member at University of Copenhagen, Nordita (Copenhagen), and, since 1993, at Technical University of Denmark, where he has been Professor of Theoretical Nanotechnology at MIC, Department of Micro and Nanotechnology, since 2003. He is also a Distinguished Professor of the Finnish Academy since 2007, and spends half of his time at the Technical University of Helskinki, Finland.
Inhaltsangabe
to Kinetics and Many-Body Theory.- Boltzmann Equation.- Numerical Solutions of the Boltzmann Equation.- Equilibrium Green Function Theory.- Nonequilibrium Many-Body Theory.- Contour-Ordered Green Functions.- Basic Quantum Kinetic Equations.- Boltzmann Limit.- Gauge Invariance.- Quantum Distribution Functions.- Quantum Transport in Semiconductors.- Linear Transport.- Field-Dependent Green Functions.- Optical Absorption in Intense THz Fields.- Transport in Mesoscopic Semiconductor Structures.- Time-Dependent Phenomena.- Theory of Ultrafast Kinetics in Laser-Excited Semiconductors.- Optical Free-Carrier Interband Kinetics in Semiconductors.- Interband Quantum Kinetics with LO-Phonon Scattering.- Two-Pulse Spectroscopy.- Coulomb Quantum Kinetics in a Dense Electron-Hole Plasma.- The Buildup of Screening.- Femtosecond Four-Wave Mixing with Dense Plasmas.