89,99 €
Versandkostenfrei*
inkl. MwSt.
Versandfertig in 6-10 Tagen
45 °P sammeln
  • Gebundenes Buch

This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data…mehr

Produktbeschreibung
This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems. This volume will be helpful for engineering and technology experts and researchers, as well as for policy-makers.

Autorenporträt
Amitava Choudhury is an Assistant Professor in the School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India. He received his M.Tech. degree from Jadavpur University and completed his Ph.D. from the Indian Institute of Engineering Science and Technology, Shibpur. He has over eight years of teaching and two years of research experience. His areas of research interest are computational geometry in micromechanical modeling, pattern recognition, character recognition, and machine learning. Arindam Biswas is an Associate Professor in School of Mines and Metallurgy at Kazi Nazrul University, Asansol, WB, India. He received his M.Tech. degree in Radio Physics and Electronics from the University of Calcutta in 2010 and a Ph.D. from NIT Durgapur in 2013. Dr. Biswas has 12 years of teaching, research, and administrative experience. He has 55 journal papers, 35 conference proceedings, 07 authored books, 07 edited books, and 06 book chapters to his credit. Dr. Biswas has supervised 05 Ph.D. students in different topics of applied optics and high-frequency semiconductor devices. His research interest areas are carrier transport in the low dimensional system and electronic device, non-linear optical communication, and THz semiconductor source. Dr. Biswas served as a reviewer for reputed journals, a member of the Institute of Engineers (India), and a regular fellow of the Optical Society of India (India). T.P. Singh is a Professor and Head of the Department of Computer Science, University of Petroleum & Energy Studies, Dehradun. Dr. Singh holds a Doctorate in Computer Science from Jamia Millia Islamia University, New Delhi. Dr. Singh has 25 years of academics, administrative, and industrial experience. His research interests include machine intelligence, pattern recognition, and the development of hybrid intelligent systems. To his credit, he has over 50 publications in national and international journals. He has guided 15 master's theses and is currently supervising 06 doctoral candidates. Santanu Kumar Ghosh received his B.Sc. and M.Sc. degrees from the University of Calcutta, in 1996 and 1998, respectively. He obtained his Ph.D. degree from Jadavpur University, in 2006. Prof. Ghosh has 19 years of teaching experience. His areas of research are production planning, inventory management, and supply chain management. He has supervised 2 Ph.D. students and is currently guiding 6 Ph.D. students. He has published several research papers in international journals.