Electric Power Systems (eBook, PDF) - Weedy, B. M.; Ekanayake, Janaka; Strbac, Goran; Cory, B. J.; Jenkins, N.
-29%
54,99
Bisher 77,99**
54,99
Alle Preise in Euro, inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Bisher 77,99**
54,99
Alle Preise in Euro, inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Bisher 77,99**
-29%
54,99
Preis in Euro, inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

Preis in Euro, inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Bisher 77,99**
-29%
54,99
Preis in Euro, inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
0 °P sammeln

  • Format: PDF


The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now expanded to cover…mehr

Produktbeschreibung
The definitive textbook for Power Systems students, providing a grounding in essential power system theory while also focusing on practical power engineering applications. Electric Power Systems has been an essential book in power systems engineering for over thirty years. Bringing the content firmly up-to-date whilst still retaining the flavour of Weedy's extremely popular original, this Fifth Edition has been revised by experts Nick Jenkins, Janaka Ekanayake and Goran Strbac. This wide-ranging text still covers all of the fundamental power systems subjects but is now expanded to cover increasingly important topics like climate change and renewable power generation. Updated material includes an analysis of today's markets and an examination of the current economic state of power generation. The physical limits of power systems equipment - currently being tested by the huge demand for power - is explored, and greater attention is paid to power electronics, voltage source and power system components, amongst a host of other updates and revisions. * Supplies an updated chapter on power system economics and management issues and extended coverage of power system components. Also expanded information on power electronics and voltage source, including VSC HVDC and FACTS. * Updated to take into account the challenges posed by different world markets, and pays greater attention to up-to-date renewable power generation methods such as wind power. * Includes modernized presentation and greater use of examples to appeal to today's students, also retains the end of chapter questions to assist with the learning process. Also shows students how to apply calculation techniques.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.

  • Produktdetails
  • Verlag: John Wiley & Sons
  • Seitenzahl: 512
  • Erscheinungstermin: 30.07.2012
  • Englisch
  • ISBN-13: 9781118361092
  • Artikelnr.: 37341559
Autorenporträt
Nick Jenkins, Cardiff University, UK Nick is a Professor at the Cardiff School of Engineering. He is also the Director of the Centre for Integrated Renewable Energy Generation and Supply (CIREGS) at Cardiff University and is a special advisor to a House of Commons Select Committee (Innovation, Universities and Skills) in regard to their enquiries into Renewable Energy-Generation Technologies. He has set the Engineering Council examination on Power Systems for ten years. Goran Strbac, Imperial College, London, UK Goran is Professor of Electrical Energy Systems at Imperial College, London. He is also the Director of the DTI Centre for Distributed Generation and Sustainable Electrical Energy, the Convener of CIGRE International Working Group on Economics of Integration of Distributed Generation and a member of the Executive Team of the IEE Professional Network on Power Trading and Control. He is a co-author of 3 books and has published more than 100 scientific papers.
Inhaltsangabe
Preface to First Edition ix Preface to Third Edition xi Preface to Third, Revised Edition xiii Preface to Fourth Edition xv Preface to Fifth Edition xvi Symbols xvii 1 Introduction 1 1.1 History 1.2 Characteristics Influencing Generation and Transmission 1.3 Operation of Generators 1.4 Energy Conversion 1.5 Renewable Energy Sources 1.6 Energy Storage 1.7 Environmental Aspects of Electrical Energy 1.8 Transmission and Distribution Systems 1.9 Utilization Problems 2 Basic Concepts 2.1 Three
Phase Systems 2.2 Three
Phase Transformers 2.3 Active and Reactive Power 2.4 The Per
Unit System 2.5 Power Transfer and Reactive Power 2.6 Harmonics in Three
Phase Systems 2.7 Useful Network Theory Problems 3 Components of a Power System 3.1 Introduction 3.2 Synchronous Machines 3.3 Equivalent Circuit Under Balanced Short
Circuit Conditions 3.4 Synchronous Generators in Parallel 3.5 The Operation of a Generator on Infinite Busbars 3.6 Automatic Voltage Regulators (AVRs) 3.7 Lines, Cables, and Transformers 3.8 Transformers 3.9 Voltage Characteristics of Loads Problems 4 Control of Power and Frequency 4.1 Introduction 4.2 The Turbine Governor 4.3 Control Loops 4.4 Division of Load between Generators 4.5 The Power
Frequency Characteristic of an Interconnected System 4.6 System Connected by Lines of Relatively Small Capacity Problems 5, Control of Voltage and Reactive Power 5.1 Introduction 5.2 The Generation and Absorption of Reactive Power 5.3 Relation Between Voltage, Power, and Reactive Power at a Node 5.4 Methods of Voltage Control: (i) Injection of Reactive Power 5.5 Methods of Voltage Control: (ii) Tap
Changing Transformers 5.6 Combined Use of Tap
Changing Transformers and Reactive
Power Injection 5.7 Phase shift trasnformer 5.8 Voltage Collapse 5.9 Voltage Control in Distribution Networks 5.10 Long Lines 5.11 General System Considerations Problems 6 Load Flows 6.1 Introduction 6.2 Circuit analysis versus load flow analysis 6.3 Gauss Siedal method 6.4 Load flows in radial and simple loop networks 6.4 Load flows in Large Systems 6.5 Example of a Complex Load Flow 6.6 Computer simulations Problems 7 Fault Analysis 7.1 Introduction 7.2 Calculation of Three
Phase Balanced Fault Currents 7.3 Method of Symmetrical Components 7.4 Representation of Plant in the Phase
Sequence Networks 7.5 Types of Fault 7.6 Fault Levels in a Typical System 7.7 Power in Symmetrical Components 7.8 Systematic Methods for Fault Analysis in Large Networks 7.9 Neutral Grounding 7.11 Interference with Communication Circuits
Electromagnetic Compatibility (EMC) Problems 8 System Stability 8.1 Introduction 8.2 Equation of Motion of a Rotating Machine 8.3 Steady
State Stability 8.4 Transient Stability 8.5 Transient Stability
Consideration of Time 8.6 Transient Stability Calculations by Computer 8.7 Dynamic or small signal stability 8.8 Stability of Loads Leading to Voltage Collapse 8.9 Further Aspects 8.10 Multimachine Systems 8.11 Energy
Type Functions 8.12 Improvement of stability Problems 9 Direct
Current Transmission 9.1 Introduction 9.2 Current Source and Voltage Source Converters 9.3 Semi
conductor Valves for High Voltage DC Converters 9.4 Current Source h.v.d.c. 9.5 Voltage Source h.v.d.c. Problems 10 Overvoltages and Insulation Requirements 10.1 Introduction 10.2 Generation of Overvoltages 10.3 Protection Against Overvoltages 10.4 Insulation Coordination 10.5 Propagation of Surges 10.6 Determination of System Voltages Produced by Travelling Surges 10.7 Electromagnetic Transient Program (EMTP) Problems 11 Substations and Protection 11.1 Introduction 11.2 Switchgear 11.3 Qualities Required of Protection 11.4 Components of Protective Schemes 11.5 Protection Systems 11.6 Distance Protection 11.7 Unit Protection Schemes 11.8 Generator Protection 11.9 Transformer Protection 11.10 Feeder Protection 11.11 System Monitoring and Control 11.12 System Security and Emergency Control Problems 12 Fundamentals of the Economics of Operation and Planning of Electricity Systems 12.1 Economic Operation of Generation Systems 12.2 Fundamental principles of Generation System Planning 12.3 Economic Operation of Transmission Systems 12.4 Fundamental principles of Transmission System Planning 12.5 Distribution and Transmission Network security considerations 12.6 Drivers for change Problems Appendix I Synchronous Machine Reactances Appendix II Typical Transformer Impedances Appendix Ill Typical Overhead Line Parameters Bibliography and Further Reading Index