-11%
112,68 €
Statt 126,57 €**
112,68 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 126,57 €**
112,68 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 126,57 €**
-11%
112,68 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 126,57 €**
-11%
112,68 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
56 °P sammeln

  • Format: PDF


Information consensus guarantees that robot vehicles sharing information over a network topology have a consistent view of information critical to the coordination task. Assuming only neighbor-neighbor interaction between vehicles, this monograph develops distributed consensus strategies designed to ensure that the information states of all vehicles in a network converge to a common value. This approach strengthens the team, minimizing power consumption and the effects of range and other restrictions. The monograph covers introductory, theoretical and experimental material, featuring - an…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 10.45MB
Produktbeschreibung
Information consensus guarantees that robot vehicles sharing information over a network topology have a consistent view of information critical to the coordination task. Assuming only neighbor-neighbor interaction between vehicles, this monograph develops distributed consensus strategies designed to ensure that the information states of all vehicles in a network converge to a common value. This approach strengthens the team, minimizing power consumption and the effects of range and other restrictions. The monograph covers introductory, theoretical and experimental material, featuring - an overview of the use of consensus algorithms in cooperative control; - consensus algorithms in single- and double-integrator, and rigid-body-attitude dynamics; - rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance. Six appendices cover material drawn from graph, matrix, linear and nonlinear systems theories. TOC:Part I: Overview of Consensus Algorithms in Cooperative Control.- Overview of Consensus Algorithms in Cooperative Control.- Part II: Consensus Algorithms for Single-integrator Dynamics.- Consensus Algorithms for Single-integrator Dynamics.- Consensus Tracking with a Reference State.- Part III: Consensus Algorithms for Double-integrator Dynamics.- Consensus Algorithms for Double-integrator Dynamics.- Extensions to a Reference Model.- Part IV: Consensus Algorithms for Rigid-body Rotational Dynamics.- Consensus Algorithms for Rigid-body Attitude Dynamics.- Relative Attitude Maintenance and Reference Attitude Tracking.- Part V: Consensus-based Design Methodologies for Distributed Multi-vehicle Cooperative Control.- Consensus-based Design Methodologies for Distributed Multi-vehicle Cooperative Control.- Part VI: Applications to Multi-vehicle Cooperative Control.- Rendezvous and Axial Alignment with Multiple Wheeled Mobile Robots.- Distributed Formation Control of Multiple Wheeled Mobile Robots with a Virtual Leader.- Decentralized Behavioral Approach to Wheeled Mobile Robot Formation Maneuvers.- Deep Space Spacecraft Formation Flying.- Cooperative Fire Monitoring with Multiple UAVs.- Cooperative Surveillance with Multiple UAVs.- Appendices: Graph Theory Notation; Matrix Theory Notation; Rigid-body Attitude Dynamics; Linear System Theory Background; Nonlinear System Theory Background.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GB, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 27.10.2007
  • Englisch
  • ISBN-13: 9781848000155
  • Artikelnr.: 37341955
Autorenporträt
Wei Ren is an assistant professor in the Department of Electrical and Computer Engineering at Utah State University. He received his Ph.D. degree in electrical engineering from Brigham Young University, Provo, UT, in 2004. From October 2004 to July 2005, he was a research associate in the Department of Aerospace Engineering at the University of Maryland, College Park, MD. His research has been focusing on cooperative control for multiple autonmous vehicles and autonomous control of robotic vehicles. He is a member of the IEEE Control Systems Society and AIAA.

Randal W. Beard received the B.S. degree in electrical engineering from the University of Utah, Salt Lake City in 1991, the M.S. degree in electrical engineering in 1993, the M.S. degree in mathematics in 1994, and the Ph.D. degree in electrical engineering in 1995, all from Rensselaer Polytechnic Institute, Troy, NY. Since 1996, he has been with the Electrical and Computer Engineering Department at Brigham Young University, Provo, UT, where he is currently an associate professor. In 1997 and 1998, he was a Summer Faculty Fellow at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. In 2006 and 2007 he was a visiting research fellow at the Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL. His primary research focus is autonomous control of miniature air vehicles and multivehicle coordination and control. He is currently an associate editor for the IEEE Control Systems Magazine and the Journal of Intelligent and Robotic Systems.

Inhaltsangabe
Overview of Consensus Algorithms in Cooperative Control.- Overview of Consensus Algorithms in Cooperative Control.- Consensus Algorithms for Single-integrator Dynamics.- Consensus Algorithms for Single-integrator Dynamics.- Consensus Tracking with a Reference State.- Consensus Algorithms for Double-integrator Dynamics.- Consensus Algorithms for Double-integrator Dynamics.- Extensions to a Reference Model.- Consensus Algorithms for Rigid Body Attitude Dynamics.- Consensus Algorithms for Rigid Body Attitude Dynamics.- Relative Attitude Maintenance and Reference Attitude Tracking.- Consensus-based Design Methodologies for Distributed Multivehicle Cooperative Control.- Consensus-based Design Methodologies for Distributed Multivehicle Cooperative Control.- Applications to Multivehicle Cooperative Control.- Rendezvous and Axial Alignment with Multiple Wheeled Mobile Robots.- Distributed Formation Control of Multiple Wheeled Mobile Robots with a Virtual Leader.- Decentralized Behavioral
Rezensionen
From the reviews: "This book gives a systematic analysis of distributed consensus problems of multivehicle cooperative control and summarizes the main recent work of the authors. The book is well written, and all of the main theoretical results are given together with rigorous mathematical proofs. This book can be a very useful reference for Ph.D. students and researchers in automatic control." (Jinhuan Wang and Xiaoming Hu, IEEE Control Systems Magazine, Vol. 30, June, 2010)