Soliton Theory and Its Applications - Gu, Chaohao (Hrsg.)
Statt 87,99 €**
86,99 €
versandkostenfrei*

inkl. MwSt.
**Früherer Preis
Versandfertig in 2-4 Wochen
43 °P sammeln
  • Gebundenes Buch

Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and…mehr

Produktbeschreibung
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
  • Produktdetails
  • Verlag: Springer / Springer, Berlin
  • Artikelnr. des Verlages: 978-3-540-57112-4
  • 1995.
  • Seitenzahl: 420
  • Erscheinungstermin: 6. Oktober 1995
  • Englisch
  • Abmessung: 241mm x 160mm x 27mm
  • Gewicht: 736g
  • ISBN-13: 9783540571124
  • ISBN-10: 3540571124
  • Artikelnr.: 09187290
Inhaltsangabe
1 Soliton Theory and Modern Physics.- 2 Inverse Scattering Methods.- 3 Bäcklund Transformations and Darboux Transformations.- 4 Classical Integrable Systems.- 5 Symmetry.- 6 Kac-Moody Algebras and Integrable Systems.- 7 Soliton and Differential Geometry.- 8 Numerical Study of Nonlinear Waves.- 9 Solitons in the Theory of Gravitational Waves.- References.