Techniques and Concepts of High-Energy Physics (eBook, PDF)
-33%
73,95 €
Statt 109,99 €**
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
37 °P sammeln
-33%
73,95 €
Statt 109,99 €**
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
37 °P sammeln
Als Download kaufen
Statt 109,99 €**
-33%
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Statt 109,99 €**
-33%
73,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
37 °P sammeln
  • Format: PDF


Proceedings of the NATO Advanced Study Institute, St.Croix, Virgin Islands, USA, 15-26 June 2000

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 35.58MB
Produktbeschreibung
Proceedings of the NATO Advanced Study Institute, St.Croix, Virgin Islands, USA, 15-26 June 2000

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer Netherlands
  • Seitenzahl: 411
  • Erscheinungstermin: 6. Dezember 2012
  • Englisch
  • ISBN-13: 9789401005227
  • Artikelnr.: 43985894
Inhaltsangabe
1 The Standard Model: 30 Years of Glory.- 1.1 Introduction.- 1.2 QCD.- 1.2.1 Deep inelastic at SLAC.- 1.2.2 Neutrino scattering results (1972-1974).- 1.2.3 R(e+e-).- 1.2.4 Scaling violation.- 1.2.5 Drell-Yan reactions.- 1.2.6 Observation of jets.- 1.2.7 Gluon jet observation.- 1.3 Weak interaction and quark and lepton families.- 1.3.1 Neutral current discovery (1973-1974).- 1.3.2 Discovery of the W and Z bosons.- 1.3.2.1 The collider.- 1.3.2.2 The experimental apparatus.- 1.3.3 A new quark : Charm (The 1974 "November revolution").- 1.3.4 The third family: the ? lepton and b quark.- 1.3.4.1 ? discovery.- 1.3.4.2 b quark discovery.- 1.4 LEP and SLC: The ideal machines for Standard Model studies.- 1.4.1 The detectors.- 1.4.2 Electroweak results.- 1.5 Conclusion.- 2 Bremsstrahlung.- 2.1 Introduction.- 2.2 Small coupling, large logarithms and evolution.- 2.2.1 Logarithm is not a function.- 2.2.2 Puzzle of DIS and QCD partons.- 2.2.3 QCD DIS minutes.- 2.2.4 LLA parton evolution.- 2.2.4.1 Space-like parton evolution.- 2.2.4.2 Time-like parton cascades.- 2.2.4.3 Apparent and hidden in parton dynamics.- 2.2.4.4 Fluctuation Time and Evolution Times: Coherence.- 2.2.4.5 Vanishing of the forward inelastic diffraction.- 2.3 Bremsstrahlung, coherence, conservation of current.- 2.3.1 Photon Bremsstrahlung.- 2.3.2 Classical Consideration.- 2.3.3 Soft radiation cross section.- 2.3.3.1 Low-Barnett-Kroll wisdom.- 2.3.3.2 Soft Photons don't carry quantum numbers.- 2.3.3.3 Gribov Bremsstrahlung theorem.- 2.3.3.4 Soft Gluons don't carry away no color.- 2.3.4 Independent and coherent radiation.- 2.3.4.1 The role of interference: strict angular ordering.- 2.3.4.2 Angular ordering on the back of envelope.- 2.3.4.3 Time delay and decoherence effects.- 2.4 Back to QCD 80.- 2.4.1 QCD scattering and cross-channel radiation.- 2.4.2 Conservation of color and QCD angular ordering.- 2.4.3 Humpbacked plateau and LPHD.- 2.4.3.1 Solving the DIS evolution.- 2.4.3.2 Coherent hump.- 2.4.3.3 Coherent damping of the Landau singularity.- 2.4.3.4 Brave gluon counting.- 2.4.4 QCD Radiophysics.- 2.4.5 Soft confinement.- 3 Baryon Asymmetry of the Universe.- 3.1 Introduction.- 3.2 Non-conservation of baryon number.- 3.2.1 Grand unified theories.- 3.2.2 Anomalous electroweak non-conservation of fermion quantum numbers.- 3.3 Hot Big Bang.- 3.4 Grand unified baryogenesis.- 3.4.1 Baryogenesis in decays of ultra-heavy particles.- 3.4.2 Survival of primordial baryon asymmetry.- 3.5 Leptogenesis.- 3.6 Electroweak baryogenesis.- 3.6.1 Preliminaries.- 3.6.2 Electroweak phase transition.- 3.6.3 Electroweak sphalerons after the phase transition.- 3.6.4 Sources of CP-violation in the EW theory and its extensions.- 3.6.5 Uniform scalar fields.- 3.6.6 Asymmetry from fermion-domain wall interactions.- 3.7 Conclusions.- 4 Introduction to Superstring Theory.- 4.1 Introduction.- 4.2 Lecture 1: Overview and Motivation.- 4.2.1 Supersymmetry.- 4.2.2 Basic Ideas of String Theory.- 4.2.3 A Brief History of String Theory.- 4.2.4 Compactification.- 4.2.5 Perturbation Theory.- 4.2.6 The Second Superstring Revolution.- 4.2.7 The Origins of Gauge Symmetry.- 4.2.8 Conclusion.- 4.3 Lecture 2: String Theory Basics.- 4.3.1 World-Line Description of a Point Particle.- 4.3.2 World-Volume Actions.- 4.3.3 Boundary Conditions.- 4.3.4 Quantization.- 4.3.5 The Free String Spectrum.- 4.3.6 The Number of Physical States.- 4.3.7 The Structure of String Perturbation Theory.- 4.3.8 Recapitulation.- 4.4 Lecture 3: Superstrings.- 4.4.1 The Gauge-Fixed Theory.- 4.4.2 The R and NS Sectors.- 4.4.3 The GSO Projection.- 4.4.4 Type II Superstrings.- 4.4.5 Anomalies.- 4.4.6 Heterotic Strings.- 4.4.7 T Duality.- 4.5 Lecture 4: From Super strings to M Theory.- 4.5.1 M Theory.- 4.5.2 Type II p-branes.- 4.5.3 Type IIB Superstring Theory.- 4.5.4 The D3-Brane and N = 4 Gauge Theory.- 4.5.5 Conclusion.- 5 Neutrino Mass and Oscillations.- 5.1 Introduction.- 5.2 Neutrinos in the Standard Model.- 5.3 Direct Measurements of Neutrino Mass.- 5.4 Motivating Neutrino Mass and Sterile Neutrinos in the Theory.- 5.5 Neutrino Oscillation Formalism.- 5.6 Experimental Signals for Oscillations.- 5.6.1 The Solar Neutrino Deficit.- 5.6.2 The Atmospheric Neutrino Deficit.- 5.6.3 The LSND Signal.- 5.7 Experiments Which Set Limits on Oscillations.- 5.7.1 Limits on ?? ? ?e oscillations.- 5.7.2 Limits on ?? ? ?? oscillations.- 5.7.3 Limits on ?e ? ?? oscillations.- 5.8 Theoretical Interpretation of the Data.- 5.9 The Future (Near and Far).- 5.9.1 Future Tests of Solar Neutrino Oscillations.- 5.9.2 Future Tests of Atmospheric Neutrino Oscillations.- 5.9.3 Future Tests of the LSND Signal.- 5.9.4 And Beyond....- 5.10 Conclusions.- 6 New Developments in Charged Particle Tracking.- 6.1 Introduction.- 6.2 Experimental Environment - New Challenges.- 6.2.1 e+e- B factories - Belle and BaBar.- 6.2.2 Heavy Ion Physics - ALICE at the LHC.- 6.2.3 Hadronic B factories - HERA-B.- 6.2.4 The High Energy Frontier - ATLAS and CMS at the LHC.- 6.3 Charged Particle Tracking with Gaseous Detectors.- 6.3.1 Ionization of Gases by Charged Particles.- 6.3.2 Drift and Diffusion.- 6.3.3 Gas amplification.- 6.3.4 The Choice of the Gas Mixture.- 6.3.5 Generic Gaseous Tracking Detectors.- 6.4 Charged Particle Tracking with Semiconductor Detectors.- 6.4.1 Historical Remarks.- 6.4.2 Basic Semiconductor Physics.- 6.4.3 The p - n diode junction.- 6.4.4 Position Sensitive Silicon Detectors.- 6.4.5 Comparison of Silicon and Gaseous Detectors.- 6.5 Radiation Damage Issues - (a) Gaseous Detectors.- 6.5.1 Introduction and Historical Remarks.- 6.5.2 Aging Mechanisms - Case Studies.- 6.5.2.1 The Choice of the Gas Composition.- 6.5.2.2 Gas Contamination.- 6.5.2.3 Anode/Cathode Material.- 6.5.2.4 Gain and Irradiation Type.- 6.5.3 Recommendations/Conclusions.- 6.6 Radiation Damage Issues - (b) Silicon Detectors.- 6.7 New Tracking Systems - Selected Example.- 6.7.1 The ATLAS Semiconductor Tracker.- 6.7.2 The HERA-B Outer Tracker.- 6.8 Summary.- 7 Issues in Calorimetry.- 7.1 Introduction.- 7.2 Physics of electromagnetic showers.- 7.3 Energy resolution of electromagnetic calorimeters.- 7.3.1 Stochastic term.- 7.3.2 Noise term.- 7.3.3 Constant term.- 7.3.4 Additional contributions.- 7.4 Physics of hadronic showers.- 7.5 Energy resolution of hadronic calorimeters.- 7.5.1 Muons and neutrinos.- 7.5.2 Strong interactions.- 7.5.3 Saturation effects.- 7.5.4 Non compensation.- 7.5.5 Compensation techniques.- 7.6 Calorimeter performance requirements.- 7.7 Main calorimeter techniques.- 7.7.1 Homogeneous calorimeters.- 7.7.1.1 Semiconductor calorimeters.- 7.7.1.2 Cerenkov calorimeters.- 7.7.1.3 Scintillation calorimeters.- 7.7.1.4 Noble liquid calorimeters.- 7.7.2 Sampling calorimeters.- 7.7.2.1 Scintillation sampling calorimeters.- 7.7.2.2 Gas sampling calorimeters.- 7.7.2.3 Solid-state sampling calorimeters.- 7.7.2.4 Liquid sampling calorimeters.- 7.8 Calorimeter calibration.- 7.9 Calorimeter integration in an experiment.- 7.9.1 Impact of material.- 7.9.2 Particle identification.- 7.10 Conclusions.- 8 An Update on the Properties of the Top Quark.- 8.1 Introduction.- 8.2 More on mass and cross section.- 8.3 Search for decay of top into a charged Higgs.- 8.4 Helicity of the W and spin correlations in top decays.- 8.5 Conclusion.- 9 Accelerator Physics and Circular Colliders.- 9.1 Accelerator Physics Concepts.- 9.2 Present Day Circular Colliders.- 9.3 Future Circular Colliders.- 10 Workshop on Confidence Limits.- 10.1 Introduction.- 10.2 Goal of Workshop.- 10.3 Main Issues.- 10.3.1 What is probability?.- 10.3.2 What are confidence limits?.- 10.3.2.1 Neyman.- 10.3.2.2 Feldman and Cousins: The Unified Approach.- 10.3.2.3 Alex Read: The CLS Method.- 10.3.2.4 Bayesian.- 10.3.3 How should one handle nuisance parameters?.- 10.3.4 What can we agree on?.- 10.4 Conclusions.- Participants.