154,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
77 °P sammeln
  • Gebundenes Buch

Modern electronics is driven by the explosive growth of digital communications and multi-media technology. A basic challenge is to design first-time-right complex digital systems, that meet stringent constraints on performance and power dissipation. In order to combine this growing system complexity with an increasingly short time-to-market, new system design technologies are emerging based on the paradigm of embedded programmable processors. This concept introduces modularity, flexibility and re-use in the electronic system design process. However, its success will critically depend on the…mehr

Produktbeschreibung
Modern electronics is driven by the explosive growth of digital communications and multi-media technology. A basic challenge is to design first-time-right complex digital systems, that meet stringent constraints on performance and power dissipation.
In order to combine this growing system complexity with an increasingly short time-to-market, new system design technologies are emerging based on the paradigm of embedded programmable processors. This concept introduces modularity, flexibility and re-use in the electronic system design process. However, its success will critically depend on the availability of efficient and reliable CAD tools to design, programme and verify the functionality of embedded processors.
Recently, new research efforts emerged on the edge between software compilation and hardware synthesis, to develop high-quality code generation tools for embedded processors. Code Generation for Embedded Systems provides a survey of these new developments. Although not limited to these targets, the main emphasis is on code generation for modern DSP processors. Important themes covered by the book include: the scope of general purpose versus application-specific processors, machine code quality for embedded applications, retargetability of the code generation process, machine description formalisms, and code generation methodologies.
Code Generation for Embedded Systems is the essential introduction to this fast developing field of research for students, researchers, and practitioners alike.
Autorenporträt
Dr. Peter Marwedel received his PhD in Physics from the University of Kiel in 1974. He is one of the early researchers in high level synthesis, working on the MIMOLA system for a number of years. Dr. Marwedel is a professor at the University of Dortmund since 1989. He has served as the chairman of the computer science department, has played a leading role in establishing the Design, Automation and Test in Europe (DATE) conference and is the chairman of the Informatik Centrum Dortmund (ICD), a technology transfer centre.