39,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
20 °P sammeln
  • Gebundenes Buch

This comprehensive and innovative text provides an understanding of the geometric and electronic structure of surfaces. It addresses the surfaces of covalent and ionic solids and also metals. The book emphasizes fundamental aspects, such as the principles of surface crystallography and thermodynamics, the forces driving the rearrangement of the atoms, and the relationship between bonding and electronic structure. The book illuminates the relationship between surface orientation, chemistry, energetics, and the resulting properties. The text includes a discussion of elementary excitations at…mehr

Produktbeschreibung
This comprehensive and innovative text provides an understanding of the geometric and electronic structure of surfaces. It addresses the surfaces of covalent and ionic solids and also metals. The book emphasizes fundamental aspects, such as the principles of surface crystallography and thermodynamics, the forces driving the rearrangement of the atoms, and the relationship between bonding and electronic structure. The book illuminates the relationship between surface orientation, chemistry, energetics, and the resulting properties. The text includes a discussion of elementary excitations at surfaces, their description and measurement. The general physical arguments and methods presented in the book will also allow the reader to analyse novel surfaces and interfaces of new materials. This makes the book an indispensable reference to all those studying growth, surface-molecule interactions, self-assembled structures, property engineering and materials development.
In recent decades, surface and interface physics has become an increasingly important subdiscipline within the physics of condensed matter as well as an interdisciplinary ?eld between physics, crystallography, chemistry, biology, and materials science. There are several driving forces for the development of the ?eld, among them semiconductor technology, new materials, epitaxy and chemical catalysis. The electrical and optical properties of nanostructures based on di?erent semiconductors are governed by the interfaces or, at least, by the presence of interfaces. A microscopic understanding of the growth processes requires the investigation of the surface processes at an atomic level. Elementary processes on surfaces, such as adsorption and desorption, play a key role in the understanding of heterogeneous catalysis. During the course of the surface investigations, it has been possible to observe a dramatic progress in the ability to study surfaces of materials in general, and on a microscopic scale in particular. There are two main reasons for this progress. From the experimental point of view it is largely due to the development and availability of new types of powerful microscopes. Sp- tacular advances in techniques such as scanning tunneling microscopy now allow us to observe individual atoms on surfaces, and to follow their paths with a clarity unimaginable a few years ago. From the theoretical point of view (or rather the viewpoint of simulation) progress is related to the wide availability of computers and the dramatic increase of their power.
Autorenporträt
Friedhelm Bechstedt, University of Jena, Germany

Rezensionen
From the reviews: "This book contains quite exhaustive information and allows the reader to take confidence with the typical concepts of surface science, both from the theoretical and the experimental points of view ... . The attempt to shed light at graduate-student level on such an important and recent topic from a theoretical point of view is extremely positive and is the major value of the book. ... Readers at any levels, from graduate students to more experienced researchers, could gain insight from this book." (Prof. Gianfranco Pacchioni, ChemPhysChem, Vol. 6 (3), 2005)