Stability and Synchronization Control of Stochastic Neural Networks - Zhou, Wuneng; Yang, Jun; Zhou, Liuwei; Tong, Dongbing
125,99 €
versandkostenfrei*


inkl. MwSt.
Sofort lieferbar
Verlängertes Rückgaberecht bis zum 10.01.2020
Bequeme Ratenzahlung möglich!
ab 6,14 € monatlich
63 °P sammeln

    Gebundenes Buch

This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.…mehr

Produktbeschreibung
This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.
  • Produktdetails
  • Studies in Systems, Decision and Control .35
  • Verlag: Springer, Berlin; Springer Berlin Heidelberg
  • Artikelnr. des Verlages: 978-3-662-47832-5
  • 1st ed. 2015
  • Erscheinungstermin: 25. August 2015
  • Englisch
  • Abmessung: 241mm x 162mm x 25mm
  • Gewicht: 830g
  • ISBN-13: 9783662478325
  • ISBN-10: 3662478323
  • Artikelnr.: 42962531
Autorenporträt
Wuneng Zhou, Ph. D., Professor, Doctoral Supervisor
1978. 2-1982. 1, B. S., HuaZhong Normal University, Wuhan, Hubei Province
2002. 3-2005. 3, Ph. D., Zhejiang University, Hangzhou, Zhejiang Province
1982. 2-1995. 1, Assistant, Lecturer, Associate Professor, Yunyang Teachers' College, Danjiangkou, Hubei Province
1995. 2-2000. 7, Associate Professor, Professor, Jingzhou Normal University, Jingzhou, Hubei Province
2000. 8-2006. 4, Professor, Zhejing Normal University, Jinhua, Zhejiang Province
2006. 5-Present, Professor, Doctoral Supervisor, Donghua University, Shanghai
Some Honors:
2013, The science and technology progress award of petrochemical industry automation industry, the first prize, No. 4.
2011, The young and middle-aged discipline leaders of Zhejiang Province.
1999, Young and middle-aged expert with outstanding contributions of Hubei Province
Research Interests
Neural networks
Complex networks
Wireless sensor networks Robust control
Selected projects charged by Wuneng Zhou
[01] National "863" Key Program of China (2008AA042902).
[02] National Natural Science Foundation of China (61075060).
[03] Innovation Program of Shanghai Municipal Education Commission (12zz064).

Selected publications
Wuneng Zhou, Qingyu Zhu, Peng Shi, Hongye Su, Jian'an Fang, and Liuwei Zhou, Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters, IEEE Transactions on Cybernetics, 2014, Dec. 44 (12): 2848-2860.
Wuneng Zhou, Dongbing Tong, Yan Gao, Chuan Ji, Hongye Su. Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (4): 662-668.
Zhengguang Wu, Hongye Su, Jian Chu and Wuneng Zhou. Improved delay-dependent stability condition of discrete recurrent neural networks with time-varying delays. IEEE Transaction on Neural Networks, 2010, 21 (4): 692-697.
Inhaltsangabe
Relative Mathematic Foundation.- Asymptotical and Exponential Stability and Synchronization for NN.- Robust Stability and Synchronization for NN.- Adaptive Stability and Synchronization for NN.- Stability and Synchronization for Neutral-type NN.- Stability and Synchronization for NN with Levy Noise.- Some Applications to Finance Based-on NN.
Rezensionen
"Neural networks are important tools for solving problems in many fields of applied sciences. ... The volume is equipped with many figures, numerical examples and numerical simulations. Moreover, each chapter contains several references. The book can be recommended to readers having good knowledge in the foundations of neural networks, dynamical control systems and stochastic analysis." (Kurt Marti, zbMATH 1355.60007, 2017)