Mengentheoretische Topologie - Querenburg, Boto von
39,99 €
versandkostenfrei*

inkl. MwSt.
Versandfertig in 6-10 Tagen
0 °P sammeln
    Broschiertes Buch

Eine verständliche und vollständige Einführung in die Mengentheoretische Topologie, die als Begleittext zu einer Vorlesung, aber auch zum Selbststudium für Studenten ab dem 3. Semester bestens geeignet ist. Zahlreiche Aufgaben ermöglichen ein systematisches Erlernen des Stoffes, wobei Lösungshinweise bzw. Musterlösungen zu ausgewählten Aufgaben bereitgestellt werden. In den ersten 10 Kapiteln werden die wichtigen Begriffe und Ergebnisse der Mengentheoretischen Topologie abgehandelt. Daran schließt sich die Untersuchung uniformer Strukturen in Kapitel 11 - 12 an. Zur Vertiefung werden…mehr

Produktbeschreibung
Eine verständliche und vollständige Einführung in die Mengentheoretische Topologie, die als Begleittext zu einer Vorlesung, aber auch zum Selbststudium für Studenten ab dem 3. Semester bestens geeignet ist. Zahlreiche Aufgaben ermöglichen ein systematisches Erlernen des Stoffes, wobei Lösungshinweise bzw. Musterlösungen zu ausgewählten Aufgaben bereitgestellt werden. In den ersten 10 Kapiteln werden die wichtigen Begriffe und Ergebnisse der Mengentheoretischen Topologie abgehandelt. Daran schließt sich die Untersuchung uniformer Strukturen in Kapitel 11 - 12 an. Zur Vertiefung werden Funktionenräume, Vervollständigungen und Kompaktifizierungen in Kapitel 13 - 15 behandelt. Für die Neuauflage wurden fünf zusätzliche Kapitel über topologische Strukturen in topologischen Gruppen sowie ein Abschnitt über die historischen Entwicklungen der Mengentheoretischen Topologie und der topologischen Gruppen zugefügt.
  • Produktdetails
  • Springer-Lehrbuch
  • Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
  • 3., neubearb. u. erw. Aufl.
  • Seitenzahl: 376
  • Erscheinungstermin: 13. März 2001
  • Deutsch
  • Abmessung: 235mm x 155mm x 20mm
  • Gewicht: 554g
  • ISBN-13: 9783540677901
  • ISBN-10: 3540677909
  • Artikelnr.: 02714083
Inhaltsangabe
0 Bezeichnungen und mengentheoretische Grundlagen.- 1 Metrische Räume.- A Grundlegende Definitionen und Beispiele.- B Offene und abgeschlossene Mengen, Umgebungen.- C Stetige Abbildungen.- D Konvergente Folgen.- E Trennungseigenschaften in Metrischen Räumen.- Aufgaben.- 2 Topologische Räume und stetige Abbildungen.- A Topologische Räume.- B Umgebungen.- C Stetige Abbildungen.- Aufgaben.- 3 Erzeugung topologischer Räume.- A Unterraumtopologie, Produkttopologie.- B Initialtopologie.- C Finaltopologie, Quotiententopologie.- D Identifizierungstopologie, Zusammenkleben von topologischen Räumen.- E Mannigfaltigkeiten und topologische Gruppen.- Aufgaben.- 4 Zusammenhängende Räume.- A Zusammenhängende Räume.- B Wegzusammenhang, Lokaler Zusammenhang.- Aufgaben.- 5 Filter und Konvergenz.- A Folgen.- B Netze.- C Filter.- Aufgaben.- 6 Trennungseigenschaften.- A Trennungseigenschaften topologischer Räume.- B Vererbbarkeit von Trennungseigenschaften.- C Fortsetzung stetiger Abbildungen.- Aufgaben.- 7 Normale Räume.- A Das Lemma von Urysohn.- B Fortsetzung stetiger Abbildungen.- C Lokal-endliche Systeme und Partitionen der Eins.- Aufgaben.- 8 Kompakte Räume.- A Kompakte Räume.- B Lokalkompakte Räume.- C Andere Kompaktheitsbegriffe.- Aufgaben.- 9 Satz von Stone-Weierstraß.- Aufgaben.- 10 Parakompakte Räume und Metrisationssätze.- A Parakompakte Räume.- B Metrisationssätze.- Aufgaben.- 11 Uniforme Räume.- A Uniforme Räume.- B Gleichmäßig stetige Abbildungen.- C Konstruktion uniformer Räume.- D Uniformisierung.- Aufgaben.- 12 Vervollständigung und Kompaktifizierung A Vervollständigung uniformer Räume.- B Kompaktifizierung vollständig regulärer Räume.- Aufgaben.- 13 Vollständige, Polnische und Baire'sche Räume.- A Vollständige Räume.- B Vollständige metrische Räume.- C Polnische Räume.- D Baire'sche Räume.- E Anwendungen des Baire'schen Satzes.- Aufgaben.- 14 Funktionenräume.- A Die uniforme Struktur der S-Konvergenz.- B Kompakt-offene Topologie.- C Gleichgradige Stetigkeit