81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
41 °P sammeln
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
Jetzt verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
41 °P sammeln
  • Format: PDF

Bias analysis quantifies the influence of systematic error on an epidemiology study's estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside…mehr

Produktbeschreibung
Bias analysis quantifies the influence of systematic error on an epidemiology study's estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Timothy Lash, D.Sc., M.P.H., is professor in the Department of Epidemiology at the Rollins School of Public Health and honorary professor of cancer epidemiology in the Department of Clinical Epidemiology at Aarhus University in Aarhus, Denmark. Dr. Lash is also past-President of the Society for Epidemiologic Research (SER) for the 2014-2015 term. His research focuses on predictors of cancer recurrence, including molecular predictors of treatment effectiveness and late recurrence, and he also researches methods and applications of quantitative bias analysis. Matthew Fox, D.Sc., M.P.H, is associate professor in the Center for Global Health & Development and in the Department of Epidemiology at Boston University. Before joining Boston University, he was a Peace Corps volunteer in the former Soviet Republic of Turkmenistan. Dr. Fox is currently funded through a K award from the National Institutes of Allergy and Infectious Diseases to work on ways to improve retention in HIV-care programs in South Africa from time of testing HIV-positive through long-term treatment. His research interests include treatment outcomes in HIV-treatment programs, infectious disease epidemiology, and epidemiological methods, including quantitative bias analysis. Richard MacLehose, Ph.D., is associate professor in the Division of Epidemiology and Community Health at the University of Minnesota. Dr. MacLehose received his M.S. in epidemiology from the University of Washington and his Ph.D. in epidemiology from the University of North Carolina. His research interests include Bayesian statistics (including bias analysis), epidemiologic methods, applied biostatistics, and reproductive and environmental health.
Rezensionen
From the reviews:

"This is the first book to focus on a compilation of bias analysis methods from the epidemiologic perspective. ... Throughout this well-written book, examples presented are highly informative and easy to follow for the target audience of students and public health researchers with a foundation in epidemiologic study design and methods. ... this book can be used either as a reference work by practicing epidemiologists or as a textbook for an intermediate-to-advanced course in epidemiologic methods." (Chanelle J. Howe and Stephen R. Cole, American Journal of Epidemiology, Vol. 170 (10), November, 2009)

"Applying Quantitative Bias Analysis to Epidemiologic Data is the first text of its kind to give a comprehensive overview of the field. ..This book fills an important gap among epidemiology texts. It provides a unified reference for the myriad of bias analysis methods that appear in the literature. It is broad and thorough in scope, and yet easily accessible..." (Biometrics)