Mechanics of Microelectromechanical Systems (eBook, PDF) - Lobontiu, Nicolae; Garcia, Ephrahim
-5%
80,95 €
Statt 85,44 €**
80,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Statt 85,44 €**
80,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
Als Download kaufen
Statt 85,44 €**
-5%
80,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
Abo Download
9,90 € / Monat*
*Abopreis beinhaltet vier eBooks, die aus der tolino select Titelauswahl im Abo geladen werden können.

inkl. MwSt.
Sofort per Download lieferbar

Einmalig pro Kunde einen Monat kostenlos testen (danach 9,90 € pro Monat), jeden Monat 4 aus 40 Titeln wählen, monatlich kündbar.

Mehr zum tolino select eBook-Abo
Jetzt verschenken
Statt 85,44 €**
-5%
80,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
40 °P sammeln

  • Format: PDF


This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 30.18MB
Produktbeschreibung
This book offers a comprehensive coverage to the mechanics of microelectromechanical systems (MEMS), which are analyzed from a mechanical engineer's viewpoint as devices that transform an input form of energy, such as thermal, electrostatic, electromagnetic or optical, into output mechanical motion (in the case of actuation) or that can operate with the reversed functionality (as in sensors) and convert an external stimulus, such as mechanical motion, into (generally) electric energy. The impetus of this proposal stems from the perception that such an approach might contribute to a more solid understanding of the principles governing the mechanics of MEMS, and would hopefully enhance the efficiency of modeling and designing reliable and desirably-optimized microsystems. The work represents an attempt at both extending and deepening the mechanical-based approach to MEMS in the static domain by providing simple, yet reliable tools that are applicable to micromechanism design through current fabrication technologies. Lumped-parameter stiffness and compliance properties of flexible components are derived both analytically (as closed-form solutions) and as simplified (engineering) formulas. Also studied are the principal means of actuation/sensing and their integration into the overall microsystem. Various examples of MEMS are studied in order to better illustrate the presentation of the different modeling principles and algorithms. Through its objective, approach and scope, this book offers a novel and systematic insight into the MEMS domain and complements existing work in the literature addressing part of the material developed herein.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

  • Produktdetails
  • Verlag: Springer-Verlag GmbH
  • Erscheinungstermin: 16.01.2006
  • Englisch
  • ISBN-13: 9780387230375
  • Artikelnr.: 43728062
Autorenporträt
Nicolae Lobontiu, Ph.D is associate professor of mechanical engineering at the University of Alaska Anchorage. His teaching background has run the gamut of mechanical engineering, including: system dynamics, controls, instrumentation and measurement, mechanics of materials, dynamics, vibrations, finite element analysis, boundary element analysis, and thermal system design.
Professor Lobontiu's research interests for the last decade have focused on compliant mechanisms (mechanical devices which move by elastic deformation of their flexible joints) and micro/nano electromechanical systems.
Inhaltsangabe
Stiffness Basics.- Microcantilevers, Microhinges, Microbridges.- Microsuspensions.- Microtransduction: Actuation and Sensing.- Static Response of Mems.- Microfabrication, Materials, Precision and Scaling.
Rezensionen
From the reviews:

"The field of microelectromechanical systems, or MEMS, has been growing at an amazing pace over the past two decades. ... the book could serve as a useful reference for researchers and practicing engineers since it covers many important mechanical aspects of microelectromechanical systems." (Reza Moheimani, IEEE Control Systems Magazine, Vol. 27, April, 2007)