Mechanics of Continua and Wave Dynamics - Brekhovskikh, Leonid M.; Goncharov, Valery
87,99 €
versandkostenfrei*

inkl. MwSt.
Versandfertig in 2-4 Wochen
44 °P sammeln
  • Broschiertes Buch

Mechanics of Continua and Wave Dynamics is a textbook for a course on the mechanics of solids and fluids with the emphasis on wave theory. The material is presented with simplicity and clarity but also with mathematical rigor. Many wave phenomena, especially those of geophysical nature (different types of waves in the ocean, seismic waves in the earth crust, wave propagation in the atmosphere, etc.), are considered. Each subject is introduced with simple physical concepts using numerical examples and models. The treatment then goes into depth and complicated aspects are illustrated by…mehr

Produktbeschreibung
Mechanics of Continua and Wave Dynamics is a textbook for a course on the mechanics of solids and fluids with the emphasis on wave theory. The material is presented with simplicity and clarity but also with mathematical rigor. Many wave phenomena, especially those of geophysical nature (different types of waves in the ocean, seismic waves in the earth crust, wave propagation in the atmosphere, etc.), are considered. Each subject is introduced with simple physical concepts using numerical examples and models. The treatment then goes into depth and complicated aspects are illustrated by appropriate generalizations. Numerous exercises with solutions will help students to comprehend and assimilate the ideas.
  • Produktdetails
  • Springer Series on Wave Phenomena Vol.1
  • Verlag: Springer, Berlin
  • 2nd ed.
  • Seitenzahl: 356
  • Erscheinungstermin: 20. Dezember 1993
  • Englisch
  • Abmessung: 235mm x 155mm x 19mm
  • Gewicht: 548g
  • ISBN-13: 9783540573364
  • ISBN-10: 3540573364
  • Artikelnr.: 26636016
Autorenporträt
Mechanics of Continua and Wave Dynamics is a simple introduction to classical and modern apects of continuum mechanics. Special attention is paid to the problems of wave propagation in the ocean, the atmosphere and in the Earth's crust.
Inhaltsangabe
I Theory of Elasticity.- 1. The Main Types of Strain in Elastic Solids.- 1.1 Equations of Linear Elasticity Theory.- 1.1.1 Hooke's Law.- 1.1.2 Differential Form of Hooke's Law. Principle of Superposition.- 1.2 Homogeneous Strains.- 1.2.1 An Elastic Body Under the Action of Hydrostatic Pressure.- 1.2.2 Longitudinal Strain with Lateral Displacements Forbidden.- 1.2.3 Pure Shear.- 1.3 Heterogeneous Strains.- 1.3.1 Torsion of a Rod.- 1.3.2 Bending of a Beam.- 1.3.3 Shape of a Beam Under Load.- 1.4 Exercises.- 2. Waves in Rods, Vibrations of Rods.- 2.1 Longitudinal Waves.- 2.1.1 Wave Equation.- 2.1.2 Harmonic Waves.- 2.2 Reflection of Longitudinal Waves.- 2.2.1 Boundary Conditions.- 2.2.2 Wave Reflection.- 2.3 Longitudinal Oscillations of Rods.- 2.4 Torsional Waves in a Rod. Torsional Vibrations.- 2.5 Bending Waves in Rods.- 2.5.1 The Equation for Bending Waves.- 2.5.2 Boundary Conditions. Harmonic Waves.- 2.5.3 Reflection of Waves. Bending Vibrations.- 2.6 Wave Dispersion and Group Velocity.- 2.6.1 Propagation of Nonharmonic Waves.- 2.6.2 Propagation of Narrow-Band Disturbances.- 2.7 Exercises.- 3. General Theory of Stress and Strain.- 3.1 Description of the State of a Deformed Solid.- 3.1.1 Stress Tensor.- 3.1.2 The Strain Tensor.- 3.1.3 The Physical Meaning of the Strain Tensor's Components.- 3.2 Equations of Motion for a Continuous Medium.- 3.2.1 Derivation of the Equation of Motion.- 3.2.2 Strain-Stress Relation. Elasticity Tensor.- 3.3 The Energy of a Deformed Body.- 3.3.1 The Energy Density.- 3.3.2 The Number of Independent Components of the Elasticity Tensor.- 3.4 The Elastic Behaviour of Isotropic Bodies.- 3.4.1 The Generalized Hooke's Law for an Isotropic Body.- 3.4.2 The Relationship Between Lamé's Constants and E and v.- 3.4.3 The Equations of Motion for an Isotropic Medium.- 3.5 Exercises.- 4. Elastic Waves in Solids.- 4.1 Free Waves in a Homogeneous Isotropic Medium.- 4.1.1 Longitudinal and Transverse Waves.- 4.1.2 Boundary Conditions for Elastic Waves.- 4.2 Wave Reflection at a Stress-Free Boundary.- 4.2.1 Boundary Conditions.- 4.2.2 Reflection of a Horizontally Polarized Wave.- 4.2.3 The Reflection of Vertically Polarized Waves.- 4.2.4 Particular Cases of Reflection.- 4.2.5 Inhomogeneous Waves.- 4.3 Surface Waves.- 4.3.1 The Rayleigh Wave.- 4.3.2 The Surface Love Wave.- 4.3.3 Some Features of Love's Waves.- 4.4 Exercises.- 5. Waves in Plates.- 5.1 Classification of Waves.- 5.1.1 Dispersion Relations.- 5.1.2 Symmetric and Asymmetric Modes.- 5.1.3 Cut-Off Frequencies of the Modes.- 5.1.4 Some Special Cases.- 5.2 Normal Modes of the Lowest Order.- 5.2.1 Quasi-Rayleigh Waves at the Plate's Boundaries.- 5.2.2 The Young and Bending Waves.- 5.3 Equations Describing the Bending of a Thin Plate.- 5.3.1 Thin Plate Approximation.- 5.3.2 Sophie Germain Equation.- 5.3.3 Bending Waves in a Thin Plate.- 5.4 Exercises.- II Fluid Mechanics.- 6. Basic Laws of Ideal Fluid Dynamics.- 6.1 Kinematics of Fluids.- 6.1.1 Eulerian and Lagrangian Representations of Fluid Motion.- 6.1.2 Transition from One Representation to Another.- 6.1.3 Convected and Local Time Derivatives.- 6.2 System of Equations of Hydrodynamics.- 6.2.1 Equation of Continuity.- 6.2.2 The Euler Equation.- 6.2.3 Completeness of the System of Equations.- 6.3 The Statics of Fluids.- 6.3.1 Basic Equations.- 6.3.2 Hydrostatic Equilibrium. Väisälä Frequency.- 6.4 Bernoulli's Theorem and the Energy Conservation Law.- 6.4.1 Bernoulli's Theorem.- 6.4.2 Some Applications of Bernoulli's Theorem.- 6.4.3 The Bernoulli Theorem as a Consequence of the Energy-Conservation Law.- 6.4.4 Energy Conservation Law in the General Case of Unsteady Flow.- 6.5 Conservation of Momentum.- 6.5.1 The Specific Momentum Flux Tensor.- 6.5.2 Euler's Theorem.- 6.5.3 Some Applications of Euler's Theorem.- 6.6 Vortex Flows of Ideal Fluids.- 6.6.1 The Circulation of Velocity.- 6.6.2 Kelvin's Circulation Theorem.- 6.6.3 Helmholtz Theorems.- 6.7 Exercises.- 7. Potential Flow.- 7.1 Equations for a Potential F